Google Research

Efficient and Modular Implicit Differentiation

Mathieu Blondel

Joint work with: Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, J-P. Vert

June 4, 2021

Gradient-based learning

- Gradient-based training algorithms are the workhorse of modern machine learning.
- Deriving gradients by hand is tedious and error prone.
- This becomes quickly infeasible for complex models.
- Changes to the model require rederiving the gradient.

■ Deep learning = GPU + data + autodiff
■ This talk: differentiating optimization problem solutions

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Automatic differentiation

\square Evaluates the derivatives of a function at a given point.

- Not the same as numerical differentiation.
- Not the same as symbolic differentiation, which returns a "human-readable" expression.

■ In a neural network context, reverse autodiff is often known as backpropagation.

Automatic differentiation

\square A program is defined as the composition of primitive operations that we know how to derive.

- The user can focus on the forward computation / model.

```
import jax.numpy as jnp
from jax import grad, jit
def predict(params, inputs):
        for W, b in params:
            outputs = jnp.dot(inputs, W) + b
            inputs = jnp.tanh(outputs)
        return outputs
def logprob_fun(params, inputs, targets):
        preds = predict(params, inputs)
        return jnp.sum((preds - targets)**2)
grad_fun = jit(grad(logprob_fun))
```


Automatic differentiation

■ Modern frameworks support higher-order derivatives

```
def tanh(x):
    y = jnp.exp(-2.0 * x)
    return (1.0 - y) / (1.0 + y)
```

$\mathrm{fp}=\operatorname{grad}(\tanh)$
$\mathrm{fpp}=\operatorname{grad}(\operatorname{grad}(\tanh))$

Forward-mode vs. Reverse-mode

- Forward-mode
- Computes Jacobian vector products (JVPs) along the forward pass
- Each JVP call builds one column of the Jacobian
- Efficient for tall Jacobians (more outputs than inputs)

■ Need not store intermediate computations
■ Reverse-mode
■ Computes vector Jacobian products (VJPs) in reverse order
■ Each VJP call builds one row of the Jacobian

- Efficient for wide matrices (more inputs than outputs)

■ Needs to store intermediate computations

Key components of an autodiff system

■ JVPs and/or VJPs for all primitive operations

- Obtaining the computational graph
- Ahead of time (from source or using a DSL)

■ Just in time (graph is built while being executed)

- Topological sort

■ Forward-mode: forward pass (JVPs)
■ Reverse-mode: forward pass + backward pass (VJPs)

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Notation

■ Small letters for scalar-valued functions, e.g., f
$■$ The gradient of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
\nabla f(x)=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{d}}(x)
\end{array}\right] \in \mathbb{R}^{d}
$$

■ The Hessian of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ evaluated at $x \in \mathbb{R}^{d}$

$$
\nabla^{2} f(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{d} \partial x_{1}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{d}^{2}}
\end{array}\right] \in \mathbb{R}^{d \times d}
$$

Notation

- Capital letters for vector-valued functions, e.g., F

■ The Jacobian of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ evaluated at $x \in \mathbb{R}^{d}$

$$
\partial F(x)=\left[\begin{array}{ccc}
\frac{\partial F_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial F_{1}(x)}{\partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{p}(x)}{\partial x_{1}} & \cdots & \frac{\partial F_{p}(x)}{\partial x_{d}}
\end{array}\right]=\left[\begin{array}{c}
\nabla F_{1}(x)^{\top} \\
\vdots \\
\nabla F_{p}(x)^{\top}
\end{array}\right] \in \mathbb{R}^{p \times d}
$$

■ Jacobian-vector product (JVP) with $u \in \mathbb{R}^{d}$

$$
\partial F(x) u \in \mathbb{R}^{p}
$$

- Vector-Jacobian product (VJP) with $v^{\top} \in \mathbb{R}^{p}$

$$
v^{\top} \partial F(x) \in \mathbb{R}^{d}
$$

Argmin differentiation

- Consider the optimization

$$
x^{\star}(\theta)=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f(x, \theta)
$$

where $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable
$\square x^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is an implicit function
■ Extensions: constrained optimization, non-smooth optimization
$■$ How to compute the Jacobian $\partial x^{\star}(\theta) \in \mathbb{R}^{d \times n}$?

- Autodiff cannot be used as is: $x^{\star}(\theta)$ has no closed form in general

Argmin differentiation

- Application 1: bi-level optimization

Gradient of the outer problem: $\nabla h(\theta)=\partial x^{\star}(\theta)^{\top} \nabla g\left(x^{\star}(\theta)\right)$
Useful in hyperparam optimization, meta-learning
■ Application 2: "optimization as a layer"

$$
\cdots \rightarrow x^{\star}(\theta) \rightarrow \ldots
$$

Can impose structure on the output via regularization or constraints
\square Application 3: sensitivity analysis; $\partial x^{\star}(\theta)$ may be interesting in its own right (e.g., to answer a scientific question)

Unrolling

- Consider the sequence produced by an iterative algorithm

$$
x_{0}(\theta), x_{1}(\theta), \ldots, x_{K}(\theta)
$$

where

$$
x_{k}(\theta)=T\left(x_{k-1}(\theta), \theta\right)
$$

- If the algorithm is convergent, $\hat{x}(\theta)=x_{K}(\theta)$ can be used as an approximation of $x^{\star}(\theta)$
- Idea: use $\partial \hat{x}(\theta)$ as an approximation of $\partial x^{\star}(\theta)$

Unrolling

- Pros

■ relatively simple (can use autodiff transparently)

- derivatives $\partial \hat{x}(\theta)$ are consistent with forward pass $\hat{x}(\theta)$
- Cons
- must reimplement the algorithm from scratch using the autodiff system (cannot reuse state-of-the-art software)
- not all algorithms are autodiff friendly,
- complexity scales linearly with n (forward-mode)
- memory scales linearly with K (reverse-mode), which is especially problematic on GPU
- the latter can be mitigated by using checkpointing, which trade-offs recomputations for smaller memory requirement

Implicit differentiation

- Use some optimality conditions to mathematically derive an expression of $\partial x^{\star}(\theta)$
- Examples that have been used in the past:
- Stationary conditions
- Karush-Kuhn-Tucker (KKT) conditions
- Proximal gradient fixed point
- Often involves the resolution of a linear system
- So far, the derivation and implementation were case-by-case and sometimes complicated

■ Not flexible: modeling changes require rederiving the expression of $\partial x^{\star}(\theta)$

- cvxpy: an optimization toolbox for easily formulating convex optimization problems
- Reduces all problems to linear conic programing
- cvxpy layers (Agrawal et al 2019): making cvxpy differentiable

■ Uses conic programming optimality conditions to derive a formula of the Jacobian

- Pro: very general (supports any convex problem)
- Con: conic solvers are rarely the state-of-the-art for each specific problem instance

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Overview

- Makes it very easy to add implicit differentiation on top of any solver (ability to reuse state-of-the-art implementations)
- The user provides (in Python) a mapping $F: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ capturing the optimality conditions solved by the solver
- We combine autodiff of F and implicit differentiation to automatically differentiate $x^{\star}(\theta)$
- Decouples the implicit differentiation mechanism from the optimality condition speficiation (in previous works, they were intertwined)
- Flexible: no mathematical derivation needed from the user, ability to experiment easily

Example: differentiating ridge regression

```
X_tr, y_tr = load_data()
def f(x, theta): # objective function
    residual = jnp.dot(X_tr, x) - y_tr
    return (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2
F = jax.grad(f) # optimality condition
@custom_root(F)
def ridge_solver(theta):
    XX = jnp.dot(X_tr.T, X_tr)
    Xy = jnp.dot(X_tr.T, y_tr)
    I = jnp.eye(X_tr.shape[0])
    return jnp.linalg.solve(XX + theta * I, Xy)
print(jax.jacobian(ridge_solver)(10.0))
```


Differentiating a root

\square Let $F: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ be a user-provided mapping, capturing the optimality conditions of a problem

- An optimal solution $x^{\star}(\theta)$ should be a root of F :

$$
F\left(x^{\star}(\theta), \theta\right)=0
$$

\square Implicit function theorem: $\partial x^{\star}(\theta)$ exists if $\partial_{1} F$ is a square invertible matrix at $\left(x^{\star}(\theta), \theta\right)$

- Using the chain rule, we get

$$
\begin{aligned}
& \partial_{1} F\left(x^{\star}(\theta), \theta\right) \partial x^{\star}(\theta)+\partial_{2} F\left(x^{\star}(\theta), \theta\right)=0 \\
\Longleftrightarrow & \underbrace{-\partial_{1} F\left(x^{\star}(\theta), \theta\right)}_{A \in \mathbb{R}^{d \times d}} \underbrace{\partial x^{\star}(\theta)}_{J \in \mathbb{R}^{d \times n}}=\underbrace{\partial_{2} F\left(x^{\star}(\theta), \theta\right)}_{B \in \mathbb{R}^{d \times n}}
\end{aligned}
$$

Differentiating a fixed point

■ In many case $x^{\star}(\theta)$ will be a fixed point:

$$
x^{\star}(\theta)=T\left(x^{\star}(\theta), \theta\right)
$$

where $T: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$

- This is of course a special case since we can define

$$
F\left(x^{\star}(\theta), \theta\right)=T\left(x^{\star}(\theta), \theta\right)-x^{\star}(\theta)=0
$$

Gradient descent

- Let $x^{\star}(\theta)$ be implicitly defined as

$$
x^{\star}(\theta)=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f(x, \theta),
$$

where $f: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable

- F is simply the gradient mapping

$$
F(x, \theta)=\nabla_{1} f(x, \theta)
$$

■ Equivalently, we can use the gradient descent fixed point

$$
T(x, \theta)=x-\eta \nabla_{1} f(x, \theta)
$$

for any $\eta>0$

KKT conditions

- Consider the problem

$$
\underset{z \in \mathbb{R}^{p}}{\operatorname{argmin}} f(z, \theta) \quad \text { subject to } \quad G(z, \theta) \leq 0, H(z, \theta)=0
$$

where G and H can be vector-valued

- The stationarity, primal feasibility and complementary slackness conditions give

$$
\begin{aligned}
\nabla_{1} f(z, \theta)+\left[\partial_{1} G(z, \theta)\right]^{\top} \lambda+\left[\partial_{1} H(z, \theta)\right]^{\top} \nu & =0 \\
H(z, \theta) & =0 \\
\lambda \circ G(z, \theta) & =0
\end{aligned}
$$

where $\nu \in \mathbb{R}^{q}$ and $\lambda \in \mathbb{R}_{+}^{r}$ are the dual variables

- This can be written as $F\left(x^{\star}(\theta), \theta\right)=0$ if we denote $x^{\star}(\theta)=\left(z^{\star}(\theta), \nu^{\star}(\theta), \lambda^{\star}(\theta)\right)$

KKT conditions

- In code:

```
grad = jax.grad(f)
def \(F(x\), theta) :
    z, nu, lambd = x
    theta_f, theta_H, theta_G = theta
    _, H_vjp = jax.vjp(H, z, theta_H)
    stationarity \(=\left(\operatorname{grad}\left(z\right.\right.\), theta_f) \(\left.+H_{-} v j p(n u)[0]\right)\)
    primal_feasability = H(z, theta_H)
```

 _, G_vjp = jax.vjp(G, z, theta_G)
 stationarity += G_vjp(lambd) [0]
 comp_slackness \(=\) G(z, theta_G) * lambd
 return stationarity, primal_feasability, comp_slackness

Quadratic programming

- Consider the QP

$$
\begin{aligned}
\underset{z \in \mathbb{R}^{p}}{\operatorname{argmin}} f(z, \theta)=\frac{1}{2} z^{\top} Q z+c^{\top} z \quad \text { s.t. } & H(z, \theta)=E z-d=0, \\
& G(z, \theta)=M z-h \leq 0 .
\end{aligned}
$$

- The KKT conditions for this QP can again be written as $F\left(x^{\star}(\theta), \theta\right)=0$ if we write

$$
\begin{aligned}
x^{\star}(\theta) & =\left(z^{\star}(\theta), \nu^{\star}(\theta), \lambda^{\star}(\theta)\right) \\
\theta & =(Q, c, E, d, M, h)
\end{aligned}
$$

■ Just need to express f, H and G directly in Python

Proximal gradient fixed point

■ Let $x^{\star}(\theta)$ be implicitly defined as

$$
x^{\star}(\theta):=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f(x, \theta)+g(x, \theta)
$$

where $g: \mathbb{R}^{d} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is potentially non-smooth

- We can use the proximal gradient fixed point

$$
T(x, \theta)=\operatorname{prox}_{\eta g}\left(x-\eta \nabla_{1} f(x, \theta), \theta\right)
$$

where we defined the proximity operator

$$
\operatorname{prox}_{g}(y, \theta):=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+g(x, \theta)
$$

- Proximal operators are Lipschitz continuous and therefore differentiable almost everywhere

■ Many enjoy a closed-form (soft thresholding, block soft thresholding, ...)

Proximal gradient fixed point

- In code:

```
\(\operatorname{grad}=j a x \cdot \operatorname{grad}(f)\)
def \(T(x\), theta):
    theta_f, theta_g = theta
    return prox (x - grad(x, theta_f), theta_g)
```


Projected gradient fixed point

- Let $x^{\star}(\theta)$ be implicitly defined as

$$
x^{\star}(\theta)=\underset{x \in \mathcal{C}(\theta)}{\operatorname{argmin}} f(x, \theta)
$$

where $\mathcal{C}(\theta)$ is a convex set depending on θ

- We can use the projected gradient fixed point

$$
T(x, \theta)=\operatorname{proj}_{\mathcal{C}}\left(x-\eta \nabla_{1} f(x, \theta), \theta\right)
$$

where we defined the Euclidean projection operator

$$
\operatorname{proj}_{\mathcal{C}}(y, \theta):=\underset{x \in \mathcal{C}(\theta)}{\operatorname{argmin}}\|x-y\|_{2}^{2}
$$

■ Our library provides plenty of reusable projections

Summary of optimality mappings

Name	Solution needed	Oracles needed
Stationary	Primal	$\nabla_{1} f$
KKT	Primal and dual	$\nabla_{1} f, H, G, \partial_{1} H, \partial_{1} G$
Proximal gradient	Primal	$\nabla_{1} f, \operatorname{prox}_{\eta g}$
Projected gradient	Primal	$\nabla_{1} f, \operatorname{proj}_{\mathcal{C}}$
Mirror descent	Primal	$\nabla_{1} f, \operatorname{proj}_{\mathcal{C}}^{\varphi}, \nabla \varphi$
Newton	Primal	$\left[\nabla_{1}^{2} f(x, \theta)\right]^{-1}, \nabla_{1} f(x, \theta)$
Block proximal gradient	Primal	$\left[\nabla_{1} f\right]_{j},\left[\operatorname{prox}_{\eta g}\right]_{j}$
Conic programming	Residual map root	$\operatorname{proj}_{\mathbb{R}^{p} \times \mathcal{K}^{*} \times \mathbb{R}_{+}}$

Oracles are accessed through their JVP or VJP.

Computing JVPs and VJPs

- Integrating $x^{\star}(\theta)$ in forward-mode autodiff requires JVPs

To obtain the JVP Ju, solve

$$
A(J u)=B u
$$

■ Integrating $x^{\star}(\theta)$ in reverse-mode autodiff requires VJPs
To obtain the VJP $v^{\top} J$, solve

$$
A^{\top} u=v
$$

then

$$
v^{\top} J=u^{\top} A J=u^{\top} B
$$

Solving the linear systems

- When A is positive semi-definite, we can use conjugate gradient
- When A is indefinite, we can use GMRES or BiCGSTAB
- All algorithms only require access to A or A^{\top} through matrix-vector products (linear maps)
- Since $A=\partial_{1} F$ and $B=\partial_{2} F$, we only access to JVPs or VJPs of F
\square When A is indefinite, an alternative is the normal equation

$$
A^{\top} A J=A^{\top} B
$$

which can be solved using conjugate gradient

Features needed from an autodiff system

■ JVPs and VJPs
\square Second derivatives when F includes the gradient mapping $\nabla_{1} f(x, \theta)$

■ Custom JVPs and VJPs: this is how we are able to create @custom_root and @custom_fixed_point

■ jax.vmap: vectorizing map (automatic batching)
■ jax.linear_transpose: automatic transposition of linear maps

Jacobian bounds

- In practice, we almost never get $x^{\star}(\theta)$ and thus never solve

$$
\underbrace{-\partial_{1} F\left(x^{\star}(\theta), \theta\right)}_{A \in \mathbb{R}^{d \times d}} \underbrace{\partial x^{\star}(\theta)}_{J \in \mathbb{R}^{d \times n}}=\underbrace{\partial_{2} F\left(x^{\star}(\theta), \theta\right)}_{B \in \mathbb{R}^{d \times n}}
$$

- Let $J(\hat{x}, \theta)$ be the solution of the linear system at \hat{x} instead of $x^{\star}(\theta)$
- Under regularity conditions on $\partial_{1} F$ and $\partial_{2} F$, we can show (Thm 1)

$$
\left\|J(\hat{x}, \theta)-J\left(x^{\star}(\theta), \theta\right)\right\|=\left\|J(\hat{x}, \theta)-\partial x^{\star}(\theta)\right\|<C\left\|\hat{x}-x^{\star}(\theta)\right\|
$$

i.e., J is Lipschitz

■ We then apply this result to the (proximal) gradient descent fixed point under regularity conditions directly on f and prox $_{g}$ (cf. corollaries 1 and 2)

Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results

Hyperparam optim of multiclass SVMs

- Goal: find hyperparameters that perform well on validation data

■ $x^{\star}(\theta) \in \mathbb{R}^{m \times k}$: optimal dual variables
$\square \theta \in \mathbb{R}_{+}$: regularization parameter

- bi-level optimization problem
$\underbrace{\min _{\theta=\exp (\lambda)} \frac{1}{2}\left\|X_{\text {val }} W\left(x^{\star}(\theta), \theta\right)-Y_{\text {val }}\right\|_{F}^{2}}_{\text {outer problem }}$ s.t. $\underbrace{x^{\star}(\theta)=\underset{x \in \mathcal{C}}{\operatorname{argmin}} \frac{\theta}{2}\|W(x, \theta)\|_{F}^{2}+\left\langle x, Y_{\mathrm{tr}}\right\rangle}_{\text {inner problem }}$
where

$$
\begin{aligned}
\mathcal{C} & :=\triangle^{k} \times \ldots \Delta^{k} \\
W(x, \theta) & :=X_{\mathrm{tr}}^{\top}\left(Y_{\mathrm{tr}}-x\right) / \theta \in \mathbb{R}^{p \times k}
\end{aligned}
$$

Hyperparam optim of multiclass SVMs

Block coordinate descent (BCD)

Hyperparam optim of multiclass SVMs

```
X_tr, Y_tr, X_val, Y_val = load_data()
def W(x, theta): # dual-primal map
    return jnp.dot(X_tr.T, Y_tr - x) / theta
def f(x, theta): # inner objective
    return 0.5 * theta * jnp.sum(W(x, theta) ** 2)
grad = jax.grad(f)
proj = jax.vmap(projection_simplex)
def T(x, theta):
    return proj(x - grad(x, theta))
@custom_fixed_point(T)
def msvm_dual_solver(theta):
    # [...]
    return x_star # solution of the dual objective
def outer_loss(lambd):
    theta = jnp.exp(lambd)
    x_star = msvm_dual_solver(theta) # inner solution
    Y_pred = jnp.dot(W(x_star, theta), X_val)
    return 0.5 * jnp.sum((Y_pred - Y_val) ** 2)
print(jax.grad(outer_loss)(lambd))
```


Task-driven dictionary learning

■ Goal: breast cancer survival prediction from gene expression data
$\square x^{\star}(\theta) \in \mathbb{R}^{m \times k}$: sparse codes (atom weights for each sample)
$\square \theta \in \mathbb{R}^{k \times p}$: dictionary of k atoms

- bi-level optimization problem

where

$$
\begin{gathered}
f(x, \theta):=\ell\left(X_{\mathrm{tr}}, x \theta\right): \text { data reconstruction error } \\
\sigma: \text { binary logistic loss }
\end{gathered}
$$

Task-driven dictionary learning

Method	L_{1} logreg	L_{2} logreg	DictL $+L_{2}$ logreg	Task-driven DictL
AUC (\%)	71.6 ± 2.0	72.4 ± 2.8	68.3 ± 2.3	73.2 ± 2.1

■ binary classification problem to discriminate patients who survive longer than 5 years $\left(m_{1}=200\right)$ vs patients who die within 5 years of diagnosis $\left(m_{0}=99\right)$ from $p=1,000$ gene expression values

■ Performs better than using the original features with 100 fewer variables

Task-driven dictionary learning

```
X_tr, y_tr = load_data()
def f(x, theta): # dictionary loss
    residual = X_tr - jnp.dot(x, theta)
    return huber_loss(residual)
grad = jax.grad(f)
def T(x, theta): # proximal gradient fixed point
    return prox_lasso(x - grad(x, theta))
@custom_fixed_point(T)
def sparse_coding(theta): # inner objective
    # [...]
    return x_star # lasso solution
def outer_loss(theta, w): # task-driven loss
    x_star = sparse_coding(theta) # sparse codes
    y_pred = jnp.dot(x_star, w)
    return logloss(y_tr, y_pred)
print(jax.grad(outer_loss, argnums=(0,1)))
```


Dataset distillation

■ Goal: learn a small "distilled" datataset such that a model trained on this data performs well on the original data

■ $x^{\star}(\theta) \in \mathbb{R}^{p \times k}$: logistic regression weights
$\square \theta \in \mathbb{R}^{k \times p}$: distilled images ("class prototypes")

- bi-level optimization problem

where

$$
f(W, X ; y):=\ell(y, X W)
$$

ℓ : multiclass logistic loss

Dataset distillation (MNIST)

- Via implicit diff

Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

■ Via unrolling (4x slower)
Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

Dataset distillation

```
X_tr, y_tr = load_data()
logloss = jax.vmap(loss.multiclass_logistic_loss)
def f(x, theta, l2reg=1e-3): # inner objective
    scores = jnp.dot(theta, x)
    distilled_labels = jnp.arange(10)
    penalty = l2reg * jnp.sum(x * x)
    return jnp.mean(logloss(distilled_labels, scores)) + penalty
F = jax.grad(f)
@custom_root(F)
def logreg_solver(theta):
    # [...]
    return x_star
def outer_loss(theta):
    x_star = logreg_solver(theta) # inner solution
    scores = jnp.dot(X_tr, x_star)
    return jnp.mean(logloss(y_tr, scores))
print(jax.grad(outer_loss)(theta))
```


Molecular dynamics

■ Goal: sensitivity analysis of molecular dynamics
$\square x^{\star}(\theta) \in \mathbb{R}^{k \times 2}$: coordinates of k particles
$\square \theta \in \mathbb{R}_{+}$: diameter of small particles

- optimization problem

$$
x^{\star}(\theta)=\underset{x \in \mathbb{R}^{k \times m}}{\operatorname{argmin}} f(x, \theta):=\sum_{i, j} U\left(x_{i, j}, \theta\right)
$$

where $U\left(x_{i, j}, \theta\right)$ is the pairwise potential energy function

Molecular dynamics: $\partial x^{\star}(\theta) \in \mathbb{R}^{k \times 2}$

Conclusion

- A general framework combining implicit differentiation with autodiff of optimality conditions
- Flexibility to try out ideas easily
- Ability to add implicit differentiation on top of existing solvers

■ Arxiv preprint: https://arxiv.org/abs/2105.15183
■ Open-source release: coming soon!
■ Thank you for your attention!

