# Recent advances on polynomial neural networks and factorization machines 

## Mathieu Blondel

(O) NTT
NTT Communication Science Laboratories
Kyoto, Japan
2017/2/23

## Neural networks



Input layer
Hidden layer
Output layer

## Traditional neural networks

Sigmoid


$$
\sigma(u)=\frac{1}{1+e^{-u}}
$$

## Polynomial networks (Livni et al. 2014)

Square


$$
\sigma_{2}(u):=u^{2}
$$

Cubic


$$
\sigma_{3}(u):=u^{3}
$$

And more generally, $\sigma_{m}(u):=u^{m}$, for some degree $m$

## Today's topics

$$
\hat{y}_{P N}:=\sum_{s=1}^{k} v_{s} \sigma_{m}\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}\right)
$$

- Properties of polynomial networks
- Ability to represent polynomials efficiently, universality
- How to train polynomial networks
- Can we do better than just gradient descent?
- A very related model: factorization machines


## Efficient representation of polynomials (1/2)

- A monomial of degree $m$ is a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t.

$$
f(\boldsymbol{x})=\prod_{t=1}^{m} x_{j_{t}}=x_{j_{1}} x_{j_{2}} \ldots x_{j_{m}} \quad \forall \boldsymbol{j} \in\{1, \ldots, d\}^{m}
$$

- A homogeneous polynomial of degree $m$ is a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t.

$$
f(\boldsymbol{x})=\sum_{\boldsymbol{j}} \beta_{\boldsymbol{j}} \prod_{t=1}^{m} x_{j_{t}} \quad \forall \beta_{\boldsymbol{j}} \in \mathbb{R}
$$

The cardinality of $\beta$ is $\binom{d}{m}$, i.e., $O\left(d^{m}\right)$ parameters!

## Efficient representation of polynomials (2/2)

- It is easy to see that

$$
\sigma_{m}\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}\right)=\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}\right)^{m}=\sum_{\boldsymbol{j}} \prod_{t=1}^{m} h_{s_{s} \mathrm{j}_{\mathrm{t}}} x_{j_{t}}
$$

- Plugging this in $\hat{y}_{P N}$, we obtain

$$
\hat{y}_{P N}=\sum_{\boldsymbol{j}} \beta_{\boldsymbol{j}} \prod_{t=1}^{m} x_{j_{t}} \quad \text { with } \quad \beta_{\boldsymbol{j}}:=\sum_{s=1}^{k} v_{s} \prod_{t=1}^{m} h_{s, j_{t}}
$$

- Factored weights: only $k d+k$ parameters instead of $O\left(d^{m}\right)$ !


## Inhomogeneous polynomials

- In practice, we would like to use monomials of degree 1 up to $m$, not just $m$
- By the binomial theorem

$$
\begin{aligned}
& \sigma_{m}\left([\boldsymbol{h} \gamma]^{\mathrm{T}}[\boldsymbol{x} 1]\right) \\
= & \sigma_{m}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}+\gamma\right) \\
= & \binom{m}{0} \sigma_{m}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}\right) \gamma^{0}+\binom{m}{1} \sigma_{m-1}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}\right) \gamma^{1}+\cdots+\binom{m}{1} \sigma_{0}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}\right) \gamma^{m}
\end{aligned}
$$

We can simply augment the data with an all-one feature

## Relation with kernel methods

$\sigma_{m}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}+\gamma\right)=\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}+\gamma\right)^{m}$ is just the usual polynomial kernel


## Universality of polynomial networks

- Polynomials can approximate any function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ arbitrarily well on a compact subset of $\mathbb{R}^{d}$ (Stone-Weierstrass theorem)
- With sufficiently many parameters, PNs can approximate any polynomial arbitrarily well
- And so PNs can approximate any function
- Livni et al. (2014) bound how many layers and units are needed for polynomial networks to approximate sigmoidal networks


## Learning PNs: two points of view

- Convex neural networks view (Bengio et al. 2005, Bach 2014)
- Conditional gradient (a.k.a. Frank-Wolfe) algorithm
- Low-rank matrix / tensor decomposition view (Blondel et al. 2016)
- Alternating minimization of convex problems
- Both have theoretical guarantees for square activations $\sigma(u)=u^{2}$


## Convex Neural Networks (1/2)

Key idea: learn a sparse linear model in an infinite-dimensional space

$$
\tilde{x}_{h}:=\sigma\left(\boldsymbol{h}^{\top} x\right)
$$



## Convex Neural Networks (2/2)

Objective (assume $f$ is smooth with constant $\beta$ )

$$
\min _{\boldsymbol{v}} f(\boldsymbol{v}):=\sum_{i=1}^{n} \ell\left(y_{i}, \sum_{\|\boldsymbol{h}\|_{2} \leq 1} v_{\boldsymbol{h}} \sigma\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}_{i}\right)\right) \text { s.t. }\|\boldsymbol{v}\|_{1} \leq \tau
$$

- Conditional gradient (a.k.a. Frank-Wolfe) training


## Infinite linear model view

$\boldsymbol{h}^{\star}=\underset{\|\boldsymbol{h}\|_{2} \leq 1}{\operatorname{argmax}}\left|\nabla_{\boldsymbol{h}} f(\boldsymbol{v})\right|$
$\eta=-\tau \operatorname{sign}\left(\nabla_{\boldsymbol{h}^{\star}} f(\boldsymbol{v})\right)$
$\boldsymbol{v} \leftarrow(1-\gamma) \boldsymbol{v}+\gamma \eta \boldsymbol{e}_{\boldsymbol{h}^{\star}}$

Practical implementation

$$
\begin{aligned}
\boldsymbol{h}^{\star} & =\underset{\|\boldsymbol{h}\|_{2} \leq 1}{\operatorname{argmax}}\left|\nabla_{\boldsymbol{h}} f(\boldsymbol{v})\right| \\
\boldsymbol{H} & \leftarrow\left[\boldsymbol{H} \boldsymbol{h}^{\star}\right] \\
\boldsymbol{v} & \leftarrow[(1-\gamma) \boldsymbol{v} \gamma \eta]
\end{aligned}
$$

## Case of square activation (1/2)

- For ReLu activations, finding $\boldsymbol{h}^{\star}$ (hidden unit selection problem) is NP-hard (Bach, 2014)
- When using $\sigma_{2}(u)=u^{2}$, we can find the optimal $\boldsymbol{h}^{\star}$ since

$$
\begin{aligned}
\nabla_{\boldsymbol{h}} f(\boldsymbol{v}) & =\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, \hat{y}_{i}\right) \sigma_{2}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}_{i}\right) \\
& =\boldsymbol{h}^{\mathrm{T}}\left(\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, \hat{y}_{i}\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}\right) \boldsymbol{h}
\end{aligned}
$$

$=: \boldsymbol{h}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{h}$
$\boldsymbol{h}^{\star}=\operatorname{argmax}\left|\boldsymbol{h}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{h}\right|$ is the dominant eigenvector of $\boldsymbol{M}$ $\|\boldsymbol{h}\|_{2} \leq 1$

## Case of square activation $(2 / 2)$

- Standard analysis of the conditional gradient algorithm guarantees that we can obtain an $\epsilon$-accurate solution in

$$
O\left(\frac{\tau^{2} \beta}{\epsilon}\right) \text { iterations }
$$

- Translates into a bound on \#hidden units since \#hidden units $\leq$ \#iterations


## Case of factorization machines (FMs)

- FMs are a closely-related model to deal with a large number of pairwise feature interactions (Rendle 2010)

One can get FMs by replacing (Blondel et al. 2016)

$$
\sigma_{2}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}\right)=\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}\right)^{2}=\sum_{j, j^{\prime}} h_{j} x_{j} h_{j^{\prime}} x_{j^{\prime}}
$$

with the ANOVA kernel

$$
a_{2}(\boldsymbol{h}, \boldsymbol{x}):=\sum_{j<j^{\prime}} h_{j} x_{j} h_{j^{\prime}} x_{j^{\prime}}
$$

FMs are a neural network with a different activation

## Case of cubic activation

- When using $\sigma_{3}(u)=u^{3}$, we now need to solve

$$
\underset{\|\boldsymbol{h}\|_{2} \leq 1}{\operatorname{argmax}}|\langle\boldsymbol{\mathcal { M }}, \boldsymbol{h} \otimes \boldsymbol{h} \otimes \boldsymbol{h}\rangle|
$$

where $\quad \mathcal{M}:=\sum_{i=1}^{n} \ell^{\prime}\left(y_{i}, \hat{y}_{i}\right) \boldsymbol{x}_{i} \otimes \boldsymbol{x}_{i} \otimes \boldsymbol{x}_{i} \in \mathbb{R}^{d \times d \times d}$

Can no longer be solved globally unless there exists an orthogonal decomposition of $\boldsymbol{\mathcal { M }}$

Recent works using conditional gradient like approach
$\begin{array}{llll}\sigma_{2} & \sigma_{3} & a_{2} & \text { refitting regularized }\end{array}$
$\begin{array}{cccccc}\text { Livni et. al (2014) } & \checkmark & \checkmark & & \checkmark & \\ \text { Blondel et. al (2015) } & \checkmark & & \checkmark & \checkmark & \checkmark \\ \text { Yamada et. al (2015) } & & & \checkmark & & \checkmark\end{array}$

- refitting: whether $\boldsymbol{v}$ is refitted over its current support after adding a new hidden unit
- regularized: whether $\boldsymbol{v}$ is regularized by the $I_{1}$ norm


## Multi-linearity property of ANOVA activations

Let $\hat{y}_{F M}=\sum_{s=1}^{k} v_{s} a_{2}\left(\boldsymbol{h}_{s}, \boldsymbol{x}\right)$
Then there exist $\boldsymbol{\alpha}_{j} \in \mathbb{R}^{k}$ and $\beta_{j} \in \mathbb{R}$ s.t.

$$
\hat{y}_{F M}=\boldsymbol{\alpha}_{j}^{\mathrm{T}} \boldsymbol{h}_{: . j}+\beta_{j} \quad \forall j \in[d]
$$

i.e., $\hat{y}_{F M}$ is affine in $\boldsymbol{h}_{: . j}$ given everything else fixed

- This implies that $\ell\left(y, \hat{y}_{F M}\right)$ is convex in $\boldsymbol{h}_{:, j}$ for any convex loss function $\ell$

Objective surface w.r.t. one column of $\boldsymbol{H}, \boldsymbol{h}_{:, j}$


Square activation ( $\sigma_{2}$ )
Second-order anova activation ( $a_{2}$ )

## Low-rank matrix decomposition view

- We can view PNs / FMs as learning a low-rank matrix

$$
\begin{aligned}
\hat{y}_{P N}= & \sum_{s=1}^{k} v_{s} \sigma_{2}\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}=\sum_{j, j^{\prime}} w_{j, j^{\prime}} x_{j} x_{j^{\prime}} \\
\hat{y}_{F M}= & \sum_{s=1}^{k} v_{s} a_{2}\left(\boldsymbol{h}_{s}, \boldsymbol{x}\right)=\sum_{j<j^{\prime}} w_{j, j^{\prime}} x_{j} x_{j^{\prime}} \\
& \text { where } \quad \boldsymbol{W}:=\sum_{s=1}^{k} v_{s} \boldsymbol{h}_{s} \boldsymbol{h}_{s}^{\mathrm{T}} \in \mathbb{R}^{d \times d}
\end{aligned}
$$

## Link with nuclear norm (1/2)

- Nuclear norm (a.k.a. trace norm) of a symmetric matrix

$$
\|\boldsymbol{W}\|_{*}=\|\boldsymbol{v}\|_{1}
$$

where $\boldsymbol{W}=\sum_{s=1}^{\operatorname{rank}(\boldsymbol{W})} v_{s} \boldsymbol{h}_{s} \boldsymbol{h}_{s}^{\mathrm{T}}$ (eigendecomposition of $\boldsymbol{W}$ )

- This gives us a link between the convex neural network view and the matrix decomposition view


## Link with nuclear norm (2/2)

$$
\begin{gathered}
\min _{\boldsymbol{v}} \sum_{i=1}^{n} \ell\left(y_{i}, \sum_{\boldsymbol{h}:\|\boldsymbol{h}\|_{2} \leq 1} v_{\boldsymbol{h}} \sigma_{2}\left(\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}_{i}\right)\right) \text { s.t. }\|\boldsymbol{v}\|_{1} \leq \tau \\
\hat{\mathbb{1}} \\
\min _{\boldsymbol{W} \in \mathbb{R}^{d \times d}} \sum_{i=1}^{n} \ell\left(y_{i}, \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}_{i}\right) \text { s.t. }\|\boldsymbol{W}\|_{*} \leq \tau
\end{gathered}
$$

Can be solved using projected gradient descent

## Bi-convex formulation

- We consider the change of variable $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\mathrm{T}}$
- and use the well-known variational formulation

$$
\|\boldsymbol{W}\|_{*}=\min _{\boldsymbol{U}, \boldsymbol{V}} \frac{1}{2}\left(\|\boldsymbol{U}\|^{2}+\|\boldsymbol{V}\|^{2}\right) \text { s.t. } \boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\mathrm{T}}
$$

- which leads us (Blondel et al. 2016) to

$$
\min _{\substack{\boldsymbol{U} \in \mathbb{R}^{d \times k} \\ \boldsymbol{V} \in \mathbb{R}^{d \times k}}} \sum_{i=1}^{n} \ell\left(y_{i}, \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x}_{i}\right) \text { s.t. } \frac{1}{2}\left(\|\boldsymbol{U}\|^{2}+\|\boldsymbol{V}\|^{2}\right) \leq \tau
$$

All local minima are global provided that $k \geq \operatorname{rank}\left(\boldsymbol{W}^{\star}\right)$

## Case of cubic activation (1/2)

- We can view PNs as learning a low-rank tensor

$$
\begin{aligned}
\hat{y}_{P N}=\sum_{s=1}^{k} v_{s} \sigma_{3}\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}\right) & =\langle\boldsymbol{\mathcal { W }}, \boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}\rangle \\
& =\sum_{j_{1}, j_{2}, j_{3}} w_{j_{j}, j_{2}, j_{3}} x_{j_{1}} x_{j_{2}} x_{j_{3}}
\end{aligned}
$$



## Case of cubic activation (2/2)

- We can decompose $\mathcal{W}$ into 3 matrices $\boldsymbol{U}^{(1)}, \boldsymbol{U}^{(2)}, \boldsymbol{U}^{(3)}$ (objective is block-wise convex)

No more link with nuclear norm but we can use $\frac{1}{2}\left(\left\|\boldsymbol{U}^{(1)}\right\|^{2}+\left\|\boldsymbol{U}^{(2)}\right\|^{2}+\left\|\boldsymbol{U}^{(3)}\right\|^{2}\right) \leq \tau$ as a heuristic regularizer

- No global minimum guarantee anymore but alternating minimization works well in practice


## Case of higher-order FMs

- Higher-order FMs correspond to using the ANOVA kernel of degree $m$ as activation

$$
a_{m}(\boldsymbol{h}, \boldsymbol{x}):=\sum_{j_{1}<\cdots<j_{m}} h_{j_{1}} x_{j_{1}} \ldots h_{j_{m}} x_{j_{m}}
$$

- Naive computation takes $O\left(d^{m}\right)$ time
- We proposed dynamic programming algorithms to compute both the ANOVA kernel and its gradient in $O(d m)$ time (Blondel et al. 2016)


## All-subsets activation

- The all-subsets kernel (Shawe-Taylor and Cristianini 2004)

$$
S(\boldsymbol{h}, \boldsymbol{x}):=\prod_{j=1}^{d}\left(1+h_{j} x_{j}\right)
$$

- Corresponds to summing $a_{0}$ to $a_{d}$

$$
S(\boldsymbol{h}, \boldsymbol{x})=\sum_{t=0}^{d} a_{t}(\boldsymbol{h}, \boldsymbol{x})=1+\boldsymbol{h}^{\mathrm{T}} \boldsymbol{x}+\sum_{t=2}^{d} a_{t}(\boldsymbol{h}, \boldsymbol{x})
$$

Hence uses all possible $d$-combinations of features

- Both the kernel and its gradient can be computed in $O(d)$ time

28

## Some other recent related works

- Chen and Manning 2014: use cubic activation on the task of dependency parsing and train with Adagrad
- Stoudenmire and Schwab (2016), Novikov et al (2016): replace CP decomposition by tensor networks (a.k.a. tensor train) and use all $d$-combinations
- Gautier et al (2016): develop a training algorithm for PN with global optimality guarantee under the following restrictions
- Impose non-negativity on parameter weights
- Need one hyper-parameter per hidden unit


# Experimental results 

## Solver comparison (1/2)

Goal: check whether optimizing the bi-convex formulation is advantageous compared to direct formulation

- Bi-convex formulation (PN case)

$$
\min _{\substack{\boldsymbol{U} \in \mathbb{R}^{d \times k} \\ \boldsymbol{V} \in \mathbb{R}^{d \times k}}} \sum_{i=1}^{n} \ell\left(y_{i}, \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x}_{i}\right)+\frac{\lambda}{2}\left(\|\boldsymbol{U}\|^{2}+\|\boldsymbol{V}\|^{2}\right)
$$

- Direct formulation (PN case)

$$
\min _{\substack{\boldsymbol{H} \in \mathbb{R}^{\times x d} \\ \boldsymbol{v} \in \mathbb{R}^{k}}} \sum_{i=1}^{n} \ell\left(y_{i}, \sum_{s=1}^{k} v_{s} \sigma_{2}\left(\boldsymbol{h}_{s}^{\mathrm{T}} \boldsymbol{x}_{i}\right)\right)+\lambda \sum_{s=1}^{k}\left|v_{s}\right|\left\|\boldsymbol{h}_{s}\right\|^{2}
$$

## Solver comparison (2/2)



Second-order anova activation ( $a_{2}$ )


Square activation ( $\sigma_{2}$ )

$$
\begin{gathered}
\text { E2006-tfidf dataset } \\
\mathrm{n}=16,087, \mathrm{~d}=150,360
\end{gathered}
$$

## Low-budget polynomial regression (1/2)

Goal: learn small polynomial regression model
We compared the following methods

- PN with $\sigma_{3}$ activation (trained by coordinate descent)
- FM with $a_{3}$ activation (trained by coordinate descent)
- Random selection: fix hidden units as training samples and fit output layer only
- Nyström method
- Linear and kernel ridge regression


## Low-budget polynomial regression (2/2)



Abalone


Cpusmall

## Application to recommender systems

- Formulate it as a matrix completion problem

|  | Movie 1 | Movie 2 | Movie 3 | Movie 4 |
| :---: | :---: | :---: | :---: | :---: |
| Alice | $\star \star$ | $?$ | $\star \star \star$ | $?$ |
| Bob | $\star$ | $?$ | $\star \star$ | $?$ |
| Charlie | $\star \star$ | $?$ | $?$ | $\star \star$ |

- Matrix factorization: find $\boldsymbol{U}, \boldsymbol{V}$ that approximately reconstruct the rating matrix

$$
\boldsymbol{R} \approx \boldsymbol{U} \boldsymbol{V}^{\mathrm{T}}
$$

## Conversion to a regression problem

|  | Movie 1 | Movie 2 | Movie 3 | Movie 4 |
| :---: | :---: | :---: | :---: | :---: |
| Alice | $\star \star$ | $?$ | $\star \star \star$ | $?$ |
| Bob | $\star$ | $?$ | $\star \star$ | $?$ |
| Charlie | $\star \star$ | $?$ | $?$ | $\star \star$ |

$\Downarrow$ one-hot encoding

$$
\underbrace{\left[\begin{array}{c}
\star \star \\
\star \star \star \\
\star \\
\star \star \\
\star \star \\
\star *
\end{array}\right]}_{\boldsymbol{y}} \underbrace{\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]}_{\boldsymbol{x}} \text { l} \begin{aligned}
& \text { Using this } \\
& \text { representation, } \\
& \text { FMs are equivalent } \\
& \text { to MF! }
\end{aligned}
$$

## Application to recommender systems



Last.fm


MovieLens 1M

## Conclusion

- PNs and FMs learn efficient representations of polynomials
- PNs: feature combinations with replacement
- e.g., $x_{j_{1}}^{3}, x_{j_{1}}^{2} x_{j_{2}}, x_{j_{1}} x_{j_{2}} x_{j_{3}}$
- FMs: feature combinations without replacement
- e.g., $x_{j_{1}} x_{j_{2}} x_{j_{3}}$
- PNs and FMs are useful for learning fast-to-evaluate polynomial models and for recommender systems


## Questions?

## References

- Bach. Breaking the curse of dimensionality with convex neural networks. arXiv preprint 2014.
- Bengio et al. Convex neural networks. In NIPS, 2005.
- Blondel et al. Convex factorization machines. In ECML/PKDD, 2015
- Blondel et al. Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms. In ICML 2016.
- Blondel et al. Higher-order Factorization Machines. In NIPS 2016.


## References

- Gautier et al. Globally optimal training of generalized polynomial neural networks with nonlinear spectral methods. In NIPS, 2016.
- Livni et al. On the computational efficiency of training neural networks. In NIPS 2014.
- Novikov et al. Exponential machines. arXiv preprint 2016.


## References

- Rendle. Factorization machines. In ICDM 2010.
- Shawe-Taylor, John and Cristianini, Nello. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
- Stoudenmire and Schwab. Supervised learning with tensor networks. In NIPS, 2016.
- Yamada et al. Convex Factorization Machine for Regression. arXiv preprint 2015.

