
Recent advances on polynomial neural
networks and factorization machines

Mathieu Blondel
NTT Communication Science Laboratories

Kyoto, Japan

2017/2/23

1

Neural networks

x1

x2

...

...

xd

Input layer

x̃s := σ(h
T
s x), s ∈ [k]

x̃1

h1,1

h1,2

h1,d

...

x̃k

hk,1

hk,2

hk,d

Hidden layer

ŷ := vTx̃

ŷ

v1

vk

Output layer2

H ∈ Rk×d

v ∈ Rk

Traditional neural networks

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid

σ(u) = 1
1 + e−u

4 2 0 2 4

0

1

2

3

4

5

ReLu

σ(u) = max(u, 0)

3

Polynomial networks (Livni et al. 2014)

4 2 0 2 4

0

5

10

15

20

25

Square

σ2(u) := u2

4 2 0 2 4

100

50

0

50

100

Cubic

σ3(u) := u3

And more generally, σm(u) := um, for some degree m

4

Today’s topics

ŷPN :=
k∑

s=1
vs σm(hT

s x)

• Properties of polynomial networks
◦ Ability to represent polynomials efficiently, universality

• How to train polynomial networks
◦ Can we do better than just gradient descent?

• A very related model: factorization machines
5

Efficient representation of polynomials (1/2)

• A monomial of degree m is a function f : Rd → R s.t.

f (x) =
m∏

t=1
xjt = xj1xj2 . . . xjm ∀j ∈ {1, . . . , d}m

• A homogeneous polynomial of degree m is a function
f : Rd → R s.t.

f (x) =
∑
j
βj

m∏
t=1

xjt ∀βj ∈ R

The cardinality of β is
(d

m
)
, i.e., O(dm) parameters!

6

Efficient representation of polynomials (2/2)

• It is easy to see that

σm(hT
s x) = (hT

s x)m =
∑
j

m∏
t=1

hs,jt xjt

• Plugging this in ŷPN , we obtain

ŷPN =
∑
j
βj

m∏
t=1

xjt with βj :=
k∑

s=1
vs

m∏
t=1

hs,jt

• Factored weights: only kd + k parameters
instead of O(dm)!

7

Inhomogeneous polynomials

• In practice, we would like to use monomials of degree 1
up to m, not just m

• By the binomial theorem

σm([h γ]T[x 1])
=σm(hTx + γ)
=
(

m
0

)
σm(hTx)γ0 +

(
m
1

)
σm−1(hTx)γ1 + · · ·+

(
m
1

)
σ0(hTx)γm

We can simply augment the data with an all-one feature
8

Relation with kernel methods

σm(hTx + γ) = (hTx + γ)m is just the usual polynomial kernel

Kernel methods

ŷKM :=

n∑

i=1

αi σm(xTi x + γ)

2-layer polynomial networks

ŷPN :=

k∑

s=1

vs σm(hTs x + γ)

learn the

“support vectors”

fix the

hidden layer

9

Universality of polynomial networks

• Polynomials can approximate any function f : Rd → R
arbitrarily well on a compact subset of Rd

(Stone-Weierstrass theorem)

• With sufficiently many parameters, PNs can approximate
any polynomial arbitrarily well

• And so PNs can approximate any function

• Livni et al. (2014) bound how many layers and units are
needed for polynomial networks to approximate
sigmoidal networks

10

Learning PNs: two points of view

• Convex neural networks view (Bengio et al. 2005, Bach 2014)
◦ Conditional gradient (a.k.a. Frank-Wolfe) algorithm

• Low-rank matrix / tensor decomposition view
(Blondel et al. 2016)

◦ Alternating minimization of convex problems

• Both have theoretical guarantees for square activations
σ(u) = u2

11

Convex Neural Networks (1/2)
Key idea: learn a sparse linear model in an infinite-dimensional space

x̃h := σ(h
Tx)

x̃h1

x̃h2

x̃h3

x̃h4

...

Infinite features

ŷ := vTx̃

ŷ

vh1

vh4

Output12

Convex Neural Networks (2/2)
• Objective (assume f is smooth with constant β)

minv f (v) :=
n∑

i=1
`

yi ,
∑
‖h‖2≤1

vh σ(hTx i)
 s.t. ||v ||1 ≤ τ

• Conditional gradient (a.k.a. Frank-Wolfe) training
Infinite linear model view

h? = argmax
‖h‖2≤1

|∇hf (v)|

η = −τ sign (∇h?f (v))
v ← (1− γ)v + γηeh?

Practical implementation

h? = argmax
‖h‖2≤1

|∇hf (v)|

H ← [H h?]
v ← [(1− γ)v γη]

13

Case of square activation (1/2)
• For ReLu activations, finding h? (hidden unit selection

problem) is NP-hard (Bach, 2014)

• When using σ2(u) = u2, we can find the optimal h? since

∇hf (v) =
n∑

i=1
`′(yi , ŷi)σ2(hTx i)

= hT
 n∑

i=1
`′(yi , ŷi)x ixT

i

h

=: hTMh

h? = argmax
‖h‖2≤1

|hTMh| is the dominant eigenvector of M
14

Case of square activation (2/2)

• Standard analysis of the conditional gradient algorithm
guarantees that we can obtain an ε-accurate solution in

O(τ
2β

ε
) iterations

• Translates into a bound on #hidden units since

#hidden units ≤ #iterations

15

Case of factorization machines (FMs)
• FMs are a closely-related model to deal with a large

number of pairwise feature interactions (Rendle 2010)

• One can get FMs by replacing (Blondel et al. 2016)

σ2(hTx) = (hTx)2 =
∑
j ,j ′

hjxjhj ′xj ′

with the ANOVA kernel

a2(h, x) :=
∑
j<j ′

hjxjhj ′xj ′

FMs are a neural network with a different activation
16

Case of cubic activation

• When using σ3(u) = u3, we now need to solve

argmax
‖h‖2≤1

|〈M,h ⊗ h ⊗ h〉|

where M :=
n∑

i=1
`′(yi , ŷi)x i ⊗ x i ⊗ x i ∈ Rd×d×d

• Can no longer be solved globally unless there exists an
orthogonal decomposition of M

17

Recent works using conditional gradient like approach

σ2 σ3 a2 refitting regularized
Livni et. al (2014) X X X

Blondel et. al (2015) X X X X
Yamada et. al (2015) X X

• refitting: whether v is refitted over its current support
after adding a new hidden unit

• regularized: whether v is regularized by the l1 norm

18

Multi-linearity property of ANOVA activations

• Let ŷFM =
k∑

s=1
vsa2(hs , x)

• Then there exist αj ∈ Rk and βj ∈ R s.t.

ŷFM = αT
j h:,j + βj ∀j ∈ [d]

i.e., ŷFM is affine in h:,j given everything else fixed

• This implies that `(y , ŷFM) is convex in h:,j for any
convex loss function `

19

Objective surface w.r.t. one column of H, h:,j

Square activation (σ2) Second-order anova activation (a2)

20

Low-rank matrix decomposition view

• We can view PNs / FMs as learning a low-rank matrix

ŷPN =
k∑

s=1
vs σ2(hT

s x) = xTW x =
∑
j ,j ′

wj ,j ′xjxj ′

ŷFM =
k∑

s=1
vs a2(hs , x) =

∑
j<j ′

wj ,j ′xjxj ′

where W :=
k∑

s=1
vshshT

s ∈ Rd×d

21

Link with nuclear norm (1/2)

• Nuclear norm (a.k.a. trace norm) of a symmetric matrix

‖W‖∗ = ‖v‖1

where W =
rank(W)∑

s=1
vshshT

s (eigendecomposition of W)

• This gives us a link between the convex neural network
view and the matrix decomposition view

22

Link with nuclear norm (2/2)

minv

n∑
i=1

`

yi ,
∑

h : ‖h‖2≤1
vh σ2(hTx i)

 s.t. ||v ||1 ≤ τ

m

min
W∈Rd×d

n∑
i=1

`
(
yi , xT

i W x i
)

s.t. ||W ||∗ ≤ τ

Can be solved using projected gradient descent
23

Bi-convex formulation

• We consider the change of variable W = UV T

• and use the well-known variational formulation

‖W‖∗ = min
U,V

1
2(‖U‖2 + ‖V‖2) s.t. W = UV T

• which leads us (Blondel et al. 2016) to

min
U∈Rd×k

V∈Rd×k

n∑
i=1

`(yi , xT
i UV Tx i) s.t. 1

2(‖U‖2 + ‖V‖2) ≤ τ

All local minima are global provided that k ≥ rank(W ?)
24

Case of cubic activation (1/2)

• We can view PNs as learning a low-rank tensor

ŷPN =
k∑

s=1
vs σ3(hT

s x) = 〈W , x ⊗ x ⊗ x〉

=
∑

j1,j2,j3
wj ,j2,j3xj1xj2xj3

= v1 + v2 + . . .

W ∈ Rd×d×d h1 ⊗ h1 ⊗ h1 h2 ⊗ h2 ⊗ h2

x1 x2 x3 x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1 x2 x3 x4

x1

x2

x3

x4

x2x3x1

=

x⊗ x⊗ x

25

Case of cubic activation (2/2)

• We can decompose W into 3 matrices U(1), U(2), U(3)

(objective is block-wise convex)

• No more link with nuclear norm but we can use
1
2(‖U(1)‖2 + ‖U(2)‖2 + ‖U(3)‖2) ≤ τ as a heuristic
regularizer

• No global minimum guarantee anymore but alternating
minimization works well in practice

26

Case of higher-order FMs

• Higher-order FMs correspond to using the ANOVA kernel
of degree m as activation

am(h, x) :=
∑

j1<···<jm
hj1xj1 . . . hjmxjm

• Naive computation takes O(dm) time

• We proposed dynamic programming algorithms to
compute both the ANOVA kernel and its gradient in
O(dm) time (Blondel et al. 2016)

27

All-subsets activation
• The all-subsets kernel (Shawe-Taylor and Cristianini 2004)

S(h, x) :=
d∏

j=1
(1 + hjxj)

• Corresponds to summing a0 to ad

S(h, x) =
d∑

t=0
at(h, x) = 1 + hTx +

d∑
t=2

at(h, x)

Hence uses all possible d-combinations of features

• Both the kernel and its gradient can be computed in
O(d) time

28

Some other recent related works

• Chen and Manning 2014: use cubic activation on the
task of dependency parsing and train with Adagrad

• Stoudenmire and Schwab (2016), Novikov et al (2016):
replace CP decomposition by tensor networks (a.k.a.
tensor train) and use all d-combinations

• Gautier et al (2016): develop a training algorithm for PN
with global optimality guarantee under the following
restrictions
◦ Impose non-negativity on parameter weights

◦ Need one hyper-parameter per hidden unit
29

Experimental results

30

Solver comparison (1/2)

Goal: check whether optimizing the bi-convex formulation
is advantageous compared to direct formulation

• Bi-convex formulation (PN case)

min
U∈Rd×k

V∈Rd×k

n∑
i=1

`(yi , xT
i UV Tx i) + λ

2 (‖U‖2 + ‖V‖2)

• Direct formulation (PN case)

min
H∈Rk×d

v∈Rk

n∑
i=1

`(yi ,
k∑

s=1
vsσ2(hT

s x i)) + λ
k∑

s=1
|vs |‖hs‖2

31

Solver comparison (2/2)Direct vs. lifted

(a) K = A2

(b) K = H2

E2006-tfidf dataset
n = 16, 087, d = 150, 360

14 / 16

Bi-convex

Second-order anova activation (a2)

Direct vs. lifted

(a) K = A2

(b) K = H2

E2006-tfidf dataset
n = 16, 087, d = 150, 360

14 / 16

Square activation (σ2)

E2006-tfidf dataset
n = 16,087, d = 150,360

32

Low-budget polynomial regression (1/2)

Goal: learn small polynomial regression model

We compared the following methods

• PN with σ3 activation (trained by coordinate descent)

• FM with a3 activation (trained by coordinate descent)

• Random selection: fix hidden units as training samples
and fit output layer only

• Nyström method

• Linear and kernel ridge regression
33

Low-budget polynomial regression (2/2)

0 10 20 30 40 50
Number of hidden units

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

R
2

3
a3
Nyström
Random Selection
Ridge
Kernel Ridge

Abalone

0 10 20 30 40 50
Number of hidden units

0.0

0.2

0.4

0.6

0.8

1.0

Co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

R
2

Cpusmall

34

Application to recommender systems
• Formulate it as a matrix completion problem

Movie 1 Movie 2 Movie 3 Movie 4
Alice ?? ? ? ? ? ?
Bob ? ? ?? ?

Charlie ?? ? ? ??

• Matrix factorization: find U,V that approximately
reconstruct the rating matrix

R ≈ UV T

35

Conversion to a regression problem
Movie 1 Movie 2 Movie 3 Movie 4

Alice ?? ? ? ? ? ?
Bob ? ? ?? ?

Charlie ?? ? ? ??

⇓ one-hot encoding

??
? ? ?
?
??
??
??

︸ ︷︷ ︸

y

1 0 0 1 0 0 0
1 0 0 0 0 1 0
0 1 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 0
0 0 1 0 0 0 1

︸ ︷︷ ︸

X
36

Using this
representation,
FMs are equivalent
to MF!

Application to recommender systems

k=6 k=10 k=20 k=30 k=50
Number of hidden units

2.1

2.2

2.3

2.4

2.5

2.6

Te
st

 R
M

SE a2 (augment)
a2 + linear

2 (augment)
2 + linear

Last.fm

k=6 k=10 k=20 k=30 k=50
Number of hidden units

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

Te
st

 R
M

SE

MovieLens 1M

37

Conclusion

• PNs and FMs learn efficient representations of
polynomials

• PNs: feature combinations with replacement
◦ e.g., x3

j1 , x2
j1xj2 , xj1xj2xj3

• FMs: feature combinations without replacement
◦ e.g., xj1xj2xj3

• PNs and FMs are useful for learning fast-to-evaluate
polynomial models and for recommender systems

38

Questions?

39

References
• Bach. Breaking the curse of dimensionality with convex

neural networks. arXiv preprint 2014.

• Bengio et al. Convex neural networks. In NIPS, 2005.

• Blondel et al. Convex factorization machines. In
ECML/PKDD, 2015

• Blondel et al. Polynomial Networks and Factorization
Machines: New Insights and Efficient Training
Algorithms. In ICML 2016.

• Blondel et al. Higher-order Factorization Machines. In
NIPS 2016.

• Chen and Manning. A fast and accurate dependency
parser using neural networks. In EMNLP 2014.

40

References

• Gautier et al. Globally optimal training of generalized
polynomial neural networks with nonlinear spectral
methods. In NIPS, 2016.

• Livni et al. On the computational efficiency of training
neural networks. In NIPS 2014.

• Novikov et al. Exponential machines. arXiv preprint
2016.

41

References

• Rendle. Factorization machines. In ICDM 2010.

• Shawe-Taylor, John and Cristianini, Nello. Kernel
Methods for Pattern Analysis. Cambridge University
Press, 2004.

• Stoudenmire and Schwab. Supervised learning with
tensor networks. In NIPS, 2016.

• Yamada et al. Convex Factorization Machine for
Regression. arXiv preprint 2015.

42

