Differentiable and Sparse Top-k: a Convex Analysis Perspective

Mathieu Blondel

Michaël Sander

Joan Puigcerver

Josip Djolonga

Gabriel Peyré

Mathieu Blondel

Motivation for the research

- The top-k operator is increasingly used as a building block in neural networks (top-k classification, mixtures of expert, weight pruning)
- However, it is a discontinuous operation, making it difficult to use in end-to-end trainable networks
- A crucial property of the top-k is its sparsity but many existing differentiable top-k relaxations are dense
- Smooth optimization is known to enjoy faster convergence rates
- However, sparsity is crucial in certain applications as a selection mechanism: mixtures of experts, weight pruning

Related work

A large body of work on relaxations of sorting, ranking and top-k...

- Using unimodal row-stochastic matrices (Grover et al, 2019; Prillo and Eisenschlos, 2020)
- Using optimal transport (Cuturi et al, 2O19)
- Using the permutahedron (Blondel et al, 2020)
- Using perturbations (Berthet et al, 2O20)
- Using sorting networks (Petersen et al, 2O21)

Contributions

- A general top- k framework, including top- k in magnitude
- Differentiable and sparse relaxations thanks to p-norm regularization
- Reduction to isotonic optimization, for computation and differentiation
- GPU/TPU-friendly algorithm based on Dykstra's algorithm
- Applications to top-k classification, mixtures of experts, weight pruning
(9) Google DeepMind

1

Top-k mask

Top-k mask operator

Bit-encoding of the top-k indices ("k-hot encoding")

$$
[\operatorname{topkmask}(\boldsymbol{x})]_{i}:=\left\{\begin{array}{ll}
1, & \text { if }[\operatorname{rank}(\boldsymbol{x})]_{i} \leq k \\
0, & \text { otherwise. }
\end{array} \in\{0,1\}^{n}\right.
$$

$$
\begin{aligned}
\boldsymbol{x} & =(1.7,3.2,-2.4) \\
\operatorname{top1mask}(\boldsymbol{x}) & =(0,1,0) \\
\operatorname{top} 2 \operatorname{mask}(\boldsymbol{x}) & =(1,1,0) \\
\operatorname{top3mask}(\boldsymbol{x}) & =(1,1,1)
\end{aligned}
$$

Discontinuous, piecewise constant with null derivatives

Top-k operator

Sparse vector containing the top-k values

$$
\begin{aligned}
\operatorname{topk}(\boldsymbol{x}):=\boldsymbol{x} & \cdot \boldsymbol{\operatorname { t o p k m a s k }}(\boldsymbol{x}) \in \mathbb{R}^{n} \\
\boldsymbol{x} & =(1.7,3.2,-2.4) \\
\boldsymbol{\operatorname { t o p } 1}(\boldsymbol{x}) & =(0.0,3.2,0) \\
\boldsymbol{\operatorname { t o p } 2}(\boldsymbol{x}) & =(1.7,3.2,0) \\
\boldsymbol{\operatorname { t o p } 3}(\boldsymbol{x}) & =(1.7,3.2,-2.4)
\end{aligned}
$$

Discontinuous, piecewise affine with constant derivatives

Regularized top-k mask: overview of the approach

- Rewrite top-k mask as a linear program solution

$$
\operatorname{topkmask}(x)=y(x):=\underset{y \in \mathcal{C}}{\operatorname{argmax}}\langle x, y\rangle
$$

- Add regularization R

$$
\operatorname{topkmask}_{R}(\boldsymbol{x})=\boldsymbol{y}_{R}(\boldsymbol{x}):=\underset{\boldsymbol{y} \in \mathcal{C}}{\operatorname{argmax}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-R(\boldsymbol{y})
$$

- Use a reduction to isotonic optimization to easily compute and differentiate topkmask ${ }_{R}(\boldsymbol{x})$

Top-k mask as a linear program

- With $\mathcal{C}=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: \boldsymbol{y} \in[0,1]^{n}, \boldsymbol{y}^{\top} \mathbf{1}=k\right\}$, we get

$$
\operatorname{topkmask}(x)=y(x)=\underset{y \in \mathcal{C}}{\operatorname{argmax}}\langle x, y\rangle
$$

- The vertices of \mathcal{C} are all possible bit encodings of cardinality k
- Relation with the capped probability simplex

$$
\mathcal{C} / k=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: \boldsymbol{y} \in[0,1 / k]^{n}, \boldsymbol{y}^{\top} \mathbf{1}=1\right\}
$$

Relation with the permutahedron

- The convex hull of all permutations of \boldsymbol{w}

$$
P(\boldsymbol{w}):=\operatorname{conv}\left(\left\{\left(w_{\sigma_{1}}, \ldots, w_{\sigma_{n}}\right): \sigma \in \Sigma\right\}\right)
$$

- With $\boldsymbol{w}=\mathbf{1}_{k}:=(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k})$, we get

$$
P(\boldsymbol{w})=\mathcal{C}=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: \boldsymbol{y} \in[0,1]^{n}, \boldsymbol{y}^{\top} \mathbf{1}=k\right\}
$$

Top-k mask: value function and its conjugate

- Value function: support function of \mathcal{C}

$$
f(\boldsymbol{x}):=\max _{\boldsymbol{y} \in \mathcal{C}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{\operatorname { t o p k s u m }}(\boldsymbol{x}):=\sum_{i=1}^{k} x_{\sigma_{i}}=\left\langle\boldsymbol{x}_{\sigma}, \mathbf{1}_{k}\right\rangle
$$

where $\sigma=\operatorname{argsort}(\boldsymbol{x}) \Longleftrightarrow x_{\sigma_{1}} \geq \cdots \geq x_{\sigma_{n}}$ and $\boldsymbol{x}_{\sigma}:=\left(x_{\sigma_{1}}, \ldots, x_{\sigma_{n}}\right)$

- Conjugate: indicator function of \mathcal{C}

$$
f^{*}(\boldsymbol{y}):=\sup _{\boldsymbol{x} \in \mathbb{R}^{n}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-f(\boldsymbol{x})=\delta_{\mathcal{C}}(\boldsymbol{y}):= \begin{cases}0, & \text { if } \boldsymbol{y} \in \mathcal{C} \\ \infty, & \text { if } \boldsymbol{y} \notin \mathcal{C}\end{cases}
$$

Regularized version

- The regularized version

$$
\operatorname{topkmask}_{R}(\boldsymbol{x})=\boldsymbol{y}_{R}(\boldsymbol{x}):=\boldsymbol{y}^{\star}
$$

is defined using the dual solution

$$
\begin{aligned}
\boldsymbol{y}^{\star} & =\underset{\boldsymbol{y} \in \mathcal{C}}{\operatorname{argmax}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-R(\boldsymbol{y}) \\
& =\underset{\boldsymbol{y} \in \mathbb{R}^{n}}{\operatorname{argmax}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-f^{*}(\boldsymbol{y})-R(\boldsymbol{y})
\end{aligned}
$$

- Equivalently, if we define the primal solution (infimal convolution)

$$
\boldsymbol{u}^{\star}=\underset{\boldsymbol{u} \in \mathbb{R}^{n}}{\operatorname{argmin}} R^{*}(\boldsymbol{x}-\boldsymbol{u})+f(\boldsymbol{u})
$$

$$
\text { then } \boldsymbol{y}^{\star}=\nabla R^{*}\left(\boldsymbol{x}-\boldsymbol{u}^{\star}\right)
$$

Regularized version

Computing the regularized version

- Recall that the primal solution is

$$
\begin{aligned}
\boldsymbol{u}^{\star} & =\underset{\boldsymbol{u} \in \mathbb{R}^{n}}{\operatorname{argmin}} R^{*}(\boldsymbol{x}-\boldsymbol{u})+f(\boldsymbol{u}) \\
& =\underset{\boldsymbol{u} \in \mathbb{R}^{n}}{\operatorname{argmin}} R^{*}(\boldsymbol{x}-\boldsymbol{u})+\left\langle\boldsymbol{u}_{\pi(\boldsymbol{u})}, \mathbf{1}_{k}\right\rangle
\end{aligned}
$$

where $\pi(\boldsymbol{u})=\operatorname{argsort}(\boldsymbol{u})$

- Reduction to isotonic optimization

$$
\begin{aligned}
\boldsymbol{u}_{\sigma}^{\star} & =\underset{v_{1} \geq \cdots \geq v_{n}}{\operatorname{argmin}} R^{*}\left(\boldsymbol{x}_{\sigma}-\boldsymbol{v}\right)+f(\boldsymbol{v}) \\
& =\underset{v_{1} \geq \cdots \geq v_{n}}{\operatorname{argmin}} R^{*}\left(\boldsymbol{x}_{\sigma}-\boldsymbol{v}\right)+\left\langle\boldsymbol{v}, \mathbf{1}_{k}\right\rangle
\end{aligned}
$$

where $\sigma=\operatorname{argsort}(\boldsymbol{x})$

- Differentiation available in closed form (implicit diff not needed) given \boldsymbol{v}^{\star}

Pool Adjacent Violators (PAV)

$$
\underset{v_{1} \geq \cdots \geq v_{n}}{\operatorname{argmin}} \sum_{i=1}^{n} h_{i}\left(v_{i}\right)
$$

- Partitions the set $[n]$ into disjoint sets $\left(B_{1}, \cdots B_{m}\right)$, starting from $m=n$ and $B_{i}=\{i\}$
- Merges these sets until the isotonic condition is met
- Needs to be able to solve $\operatorname{argmin}_{\gamma \in \mathbb{R}} \sum_{i \in B_{j}} h_{i}(\gamma)$ in constant time to get $O(n)$ total complexity
o p-norm regularization case: we need to find the root of a polynomial (easy when $p=2$ or $p=4 / 3$)

Using Dykstra's algorithm

- Key idea: alternate projections between C_{1} and C_{2}

$$
\left\{\boldsymbol{v} \in \mathbb{R}^{n}: v_{1} \geq \cdots \geq v_{n}\right\}=\underbrace{\left\{\boldsymbol{v} \in \mathbb{R}^{n}: v_{1} \geq v_{2}, v_{3} \geq v_{4}, \ldots\right\}}_{C_{1}} \cap \underbrace{\left\{\boldsymbol{v} \in \mathbb{R}^{n}: v_{2} \geq v_{3}, v_{4} \geq v_{5}, \ldots\right\}}_{C_{2}}
$$

- Huge speedup on TPU

Google DeepMind

Top-k in magnitude

Top-k in magnitude operator

Same as top-k operator but selects elements with largest absolute value

$$
\operatorname{topkmag}(x):=x \cdot \operatorname{topkmask}(|x|)
$$

$$
\begin{aligned}
\boldsymbol{x} & =(1.7,3.2,-2.4) \\
\operatorname{top1mag}(\boldsymbol{x}) & =(0.0,3.2,0) \\
\operatorname{top} 2 \boldsymbol{m a g}(\boldsymbol{x}) & =(0,3.2,-2.4) \\
\operatorname{top} 3 m a g(\boldsymbol{x}) & =(1.7,3.2,-2.4)
\end{aligned}
$$

Top-k in magnitude as a gradient

- We introduce a nonlinearity $\varphi(\boldsymbol{x})=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)$

$$
f_{\varphi}(\boldsymbol{x}):=f(\varphi(\boldsymbol{x}))=\max _{\boldsymbol{y} \in \mathcal{C}}\langle\varphi(\boldsymbol{x}), \boldsymbol{y}\rangle
$$

- With $\phi(x)=\frac{1}{2} x^{2}$, we have

$$
\nabla f_{\varphi}(\boldsymbol{x})=\operatorname{topkmag}(\boldsymbol{x})
$$

- With $\phi(x)=x$, we have

$$
\nabla f_{\varphi}(\boldsymbol{x})=\nabla f(\boldsymbol{x})=\text { topkmask }(\boldsymbol{x})
$$

Regularized version

$$
\operatorname{topkmag}_{R}(\boldsymbol{x}):=\boldsymbol{y}^{\star}=\nabla R^{*}\left(\boldsymbol{x}-\boldsymbol{u}^{\star}\right)
$$

where we defined the dual solution

$$
\boldsymbol{y}^{\star}:=\underset{\boldsymbol{y} \in \mathbb{R}^{n}}{\operatorname{argmax}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-f_{\varphi}^{*}(\boldsymbol{y})-R(\boldsymbol{y})
$$

and the primal solution (inf-convolution)

$$
\boldsymbol{u}^{\star}=\underset{\boldsymbol{u} \in \mathbb{R}^{n}}{\operatorname{argmin}} R^{*}(\boldsymbol{x}-\boldsymbol{u})+f_{\varphi}(\boldsymbol{u})
$$

Conjugate

- For $\varphi(\boldsymbol{x})=\boldsymbol{x}$: indicator function of \mathcal{C}

$$
f_{\varphi}^{*}(\boldsymbol{y})=f^{*}(\boldsymbol{y})=\delta_{\mathcal{C}}(\boldsymbol{y})
$$

- For $\varphi(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{2}$: squared k-support norm

$$
f_{\varphi}^{*}(\boldsymbol{y})=\frac{1}{2} \min _{z \in \mathcal{C}} \sum_{i=1}^{n} \frac{y_{i}^{2}}{z_{i}}
$$

- For general φ : minimum distance to \mathcal{C}

$$
f_{\varphi}^{*}(\boldsymbol{y})=\min _{\boldsymbol{z} \in \mathcal{C}} D_{\phi^{*}}(\boldsymbol{y}, \boldsymbol{z})
$$

where we defined the f -divergence

$$
D_{f}(\boldsymbol{y}, \boldsymbol{z}):=\sum_{i=1}^{n} z_{i} f\left(y_{i} / z_{i}\right)
$$

Regularized version

Hard

$$
p=2
$$

$$
p=4 / 3
$$

Computing the regularized version

- Primal solution

$$
\boldsymbol{u}^{\star}=\underset{\boldsymbol{u} \in \mathbb{R}^{n}}{\operatorname{argmin}} R^{*}(\boldsymbol{x}-\boldsymbol{u})+f_{\varphi}(\boldsymbol{u})
$$

- Reduction to isotonic optimization

$$
\begin{aligned}
\boldsymbol{u}_{\sigma}^{\star} & =\underset{v_{1} \geq \cdots \geq v_{n} \geq 0}{\operatorname{argmin}} R^{*}\left(\boldsymbol{x}_{\sigma}-\boldsymbol{v}\right)+f_{\varphi}(\boldsymbol{v}) \\
& =\underset{v_{1} \geq \cdots \geq v_{n} \geq 0}{\operatorname{argmin}} R^{*}\left(\boldsymbol{x}_{\sigma}-\boldsymbol{v}\right)+f(\varphi(\boldsymbol{v})) \\
& =\underset{v_{1} \geq \cdots \geq v_{n} \geq 0}{\operatorname{argmin}} R^{*}\left(\boldsymbol{x}_{\sigma}-\boldsymbol{v}\right)+\left\langle\varphi(\boldsymbol{v}), \mathbf{1}_{k}\right\rangle
\end{aligned}
$$

where $\sigma=\operatorname{argsort}(|\boldsymbol{x}|)$ and assuming $\varphi(\boldsymbol{x})=\varphi(-\boldsymbol{x})$

Nonconvex viewpoint: connection with the ℓ_{0} pseudo-norm

- We have

$$
f_{\varphi}(\boldsymbol{x})=\max _{\boldsymbol{y} \in S_{k}}\langle\boldsymbol{x}, \boldsymbol{y}\rangle-\sum_{i=1}^{n} \phi\left(y_{i}\right)
$$

where

$$
\varphi(x)=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right) \quad \text { and } \quad S_{k}:=\left\{\boldsymbol{y} \in \mathbb{R}^{n}:\|\boldsymbol{y}\|_{0} \leq k\right\}
$$

- $f_{\varphi}^{*}(\boldsymbol{y})$ is the convex envelope of

$$
\boldsymbol{y} \mapsto \sum_{i=1}^{n} \phi^{*}\left(y_{i}\right)+\delta_{S_{k}}(\boldsymbol{y})
$$

With $\phi(x)=\frac{1}{2} x^{2}, f_{\varphi}^{*}(\boldsymbol{y})$ is the squared \mathbf{k}-support norm

Google DeepMind

Applications

Weight pruning (multilayer perceptron, MNIST)

$$
\begin{gathered}
W_{i} \leftarrow \mathbf{t o p k m a g}\left(W_{i}\right), i \in\{2,3\} \\
W_{3} \sigma\left(W_{2} \sigma\left(W_{1} \boldsymbol{a}+\boldsymbol{b}_{1}\right)+\boldsymbol{b}_{2}\right)+\boldsymbol{b}_{3}
\end{gathered}
$$

Top-k classification (vision transformer, CIFAR 100)

$$
\begin{aligned}
\ell_{R}(\boldsymbol{\theta}, \boldsymbol{t}):= & {\left[\max _{\boldsymbol{y} \in \mathcal{C}}\langle\boldsymbol{\theta}, \boldsymbol{y}\rangle-R(\boldsymbol{y})\right]-\langle\boldsymbol{\theta}, \boldsymbol{t}\rangle } \\
& \boldsymbol{\theta}: \text { logits, } \boldsymbol{t}: \text { target }
\end{aligned}
$$

Sparse Mixture of Vision Transformers

JFT-300M dataset (305 million images)

Sparsity-constrained OT

$$
\min _{T \in \mathcal{U}(a, b)}\langle T, C\rangle+\sum_{j=1}^{n} f_{\varphi}^{*}\left(\boldsymbol{t}_{j}\right)
$$

Google DeepMind

Thank you!

