
Machine Learning DOI 10.1007/s10994-013-5367-2

Block Coordinate Descent Algorithms for Large-scale
Sparse Multiclass Classification

Mathieu Blondel

Kazuhiro Seki

Kuniaki Uehara

Received: 4 November 2012 / Accepted: 23 April 2013

Abstract Over the past decade, `1 regularization has emerged as a powerful way
to learn classifiers with implicit feature selection. More recently, mixed-norm (e.g.,
`1/`2) regularization has been utilized as a way to select entire groups of features. In
this paper, we propose a novel direct multiclass formulation specifically designed for
large-scale and high-dimensional problems such as document classification. Based
on a multiclass extension of the squared hinge loss, our formulation employs `1/`2
regularization so as to force weights corresponding to the same features to be zero
across all classes, resulting in compact and fast-to-evaluate multiclass models. For
optimization, we employ two globally-convergent variants of block coordinate de-
scent, one with line search (Tseng and Yun, 2009) and the other without (Richtárik
and Takáč, 2012). We present the two variants in a unified manner and develop
the core components needed to efficiently solve our formulation. The end result is a
couple of block coordinate descent algorithms specifically tailored to our multiclass
formulation. Experimentally, we show that block coordinate descent performs favor-
ably to other solvers such as FOBOS, FISTA and SpaRSA. Furthermore, we show
that our formulation obtains very compact multiclass models and outperforms `1/`2-
regularized multiclass logistic regression in terms of training speed, while achieving
comparable test accuracy.

Keywords multiclass classification · group sparsity · block coordinate descent

1 Introduction

`1-regularized loss minimization has attracted a great deal of research over the past
decade [33]. `1 regularization has many advantages, including its computational effi-
ciency, its ability to perform implicit feature selection and under certain conditions,

Mathieu Blondel · Kazuhiro Seki · Kuniaki Uehara
Graduate School of System Informatics
Kobe University
1-1 Rokkodai, Nada, Kobe 657-8501, Japan
E-mail: mathieu@mblondel.org

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 2

to recover the model’s true sparsity [37]. More recently, mixed-norm (e.g., `1/`2) reg-
ularization has been proposed [2,35] as a way to select groups of features. Here, the
notion of group is application-dependent and may be used to exploit prior knowledge
about natural feature groups [35,20] or problem structure [21,10].

In this paper, we focus on the application of `1/`2 regularization to multiclass
classification problems. Let W be a d ×m matrix, where d represents the number
of features and m the number of classes. We denote by W j: ∈ Rm the jth row of

W and by W :r ∈ Rd its rth column. We consider the traditional multiclass model
representation where an input vector x ∈ Rd is classified to one of the m classes
using the following rule:

y = argmax
r∈{1,...,m}

W :r · x. (1)

Each column W :r of W can be thought as a prototype representing the rth class and
the inner product W :r · x as the score of the rth class with respect to x. Therefore,
Eq. (1) chooses the class with highest score. Given n training instances xi ∈ Rd and
their associated labels yi ∈ {1, . . . ,m}, our goal is to estimate W .

In this paper, we propose a novel direct multiclass formulation specifically de-
signed for large-scale and high-dimensional problems such as document classification.
Based on a multiclass extension of the squared hinge loss, our formulation employs
`1/`2 regularization so as to force weights corresponding to the same features to be
zero across all classes, resulting in compact and fast-to-evaluate multiclass models
(see Section 2). For optimization, we employ two globally-convergent variants of
block coordinate descent, one with line search (Tseng and Yun [28]) and the other
without (Richtárik and Takáč [23]). We present the two variants in a unified man-
ner and develop core components needed to optimize our objective (efficient gradient
computation, Lipschitz constant of the gradient, computationally cheap stopping cri-
terion). The end result is a couple of block coordinate descent algorithms specifically
tailored to our multiclass formulation. Experimentally, we show that block coordi-
nate descent performs favorably to other solvers such as FOBOS [11], FISTA [3]
and SpaRSA [32]. Furthermore, we show that our formulation obtains very compact
multiclass models and outperforms `1/`2-regularized multiclass logistic regression in
terms of training speed, while achieving comparable test accuracy.

2 Sparsity-inducing regularization

Fig. 1 illustrates sparsity patterns obtained by different forms of regularization and
shows why `1/`2 regularization is particularly well adapted to multiclass models.
With `22 regularization (ridge), R`22(W) = 1

2

∑
j,rW

2
jr, sparsity is not enforced and

therefore the obtained model may become completely dense. With `1 regularization
(lasso), R`1(W) =

∑
j,r |W jr|, the model becomes sparse at the individual weight

level. A well-known problem of `1 regularization is that, if several features are cor-
related, it tends to select only one of them, even if other features are useful for
prediction. To solve this problem, `1 regularization can be combined with `22 reg-
ularization. The resulting regularization, R`1+`22(W) = ρR`1(W) + (1 − ρ)R`22(W),
where ρ > 0 is a hyperparameter, is known as elastic-net in the literature [38] and
leads to sparsity at the individual weight level.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 3

d

m

`22 d

m

`1 d

m

`1 + `22 d

m

`1/`2

Fig. 1 Illustration of the sparsity patterns obtained by `22 (ridge), `1 (lasso), `1 +`22 (elastic-net)

and `1/`2 (group lasso) regularizations on the matrix W ∈ Rd×m. With `1/`2 regularization,
we can obtain compact and fast-to-evaluate multiclass models.

Let R`2(W j:) = ||W j:||2 (notice that the `2 norm is not squared). With `1/`2
regularization (group lasso), R`1/`2(W) =

∑
j R`2(W j:), the model becomes sparse

at the feature group (here, row) level. Applied to a multiclass model, `1/`2 regu-
larization can thus force weights corresponding to the same feature to become zero
across all classes. The corresponding features can therefore be safely ignored at test
time, which is especially useful when features are expensive to extract. For more
information on sparsity inducing penalties, see Bach et al. ’s excellent survey [1].

3 Related work

3.1 Multiclass classification: direct vs. indirect formulations

Classifying an object into one of several categories is an important problem arising in
many applications such as document classification and object recognition. Machine
learning approaches to this problem can be roughly divided into two categories: direct
and indirect approaches. While direct approaches formulate the multiclass problem
directly, indirect approaches reduce the multiclass problem to multiple indepen-
dent binary classification or regression problems. Because support vector machines
(SVMs) [5] were originally proposed as a binary classification model, they have fre-
quently been used in combination with indirect approaches to perform multiclass
classification. Among them, one of the most popular is “one-vs-rest” [25], which
consists in learning to separate one class from all the others, independently for all m
possible classes. Direct multiclass SVM extensions were later proposed by Weston-
Watkins [30], Lee et al. [18] and Crammer-Singer [8]. They were all formulated as
constrained problems and solved in the dual. An unconstrained (non-differentiable)
form of the Crammer-Singer formulation is popularly used with stochastic subgra-
dient descent algorithms such as Pegasos [26]. Another popular direct multiclass
(smooth) formulation, which is an intuitive extension of traditional logistic regres-
sion, is multiclass logistic regression. In this paper, we propose an efficient direct
multiclass formulation.

3.2 Sparse multiclass classification

Recently, mixed-norm regularization has attracted much interest [35,20,11,21,10]
due to its ability to impose sparsity at the feature group level. Few papers, how-

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 4

ever, have investigated its application to multiclass classification. Zhang et al. [36]
extend Lee et al.’s multiclass SVM formulation [18] to employ `1/`∞ regularization
and formulate the learning problem as a linear program (LP). However, they exper-
imentally verify their method only on very small problems (both in terms of n and
d). Duchi and Singer [10] propose a boosting-like algorithm specialized for `1/`2-
regularized multiclass logistic regression. In another paper, Duchi and Singer [11]
derive and analyze FOBOS, a stochastic subgradient descent framework based on
forward-backward splitting and apply it, among other things, to `1/`2-regularized
multiclass logistic regression. In this paper, we choose `1/`2 regularization, since it
can be more efficiently optimized than `1/`∞ regularization (see Section 4.7).

3.3 Coordinate descent methods

Although coordinate descent methods were among the first optimization methods
proposed and studied in the literature (see [4] and references therein), it is only
recently that they regained popularity, thanks to several successful applications in
the machine learning [17,27,14,16,33,22] and optimization [28,31,23] communities.
Conceptually and algorithmically simple, (block) coordinate descent algorithms fo-
cus at each iteration on updating one block of variables while keeping the others
fixed, and have been shown to be particularly well-suited for minimizing objective
functions with non-smooth separable regularization such as `1 or `1/`2 [28,31,23].

Coordinate descent algorithms have different trade-offs: expensive gradient-based
greedy block selection as opposed to cheap cyclic or randomized selection, use of line
search [28,31] or not [23]. For large-scale linear classification, and we confirm in this
paper, cyclic and randomized block selection schemes have been shown to achieve
excellent performance [33,6,34,23]. The most popular loss function for `1-regularized
binary classification is arguably logistic regression, due to its smoothness [33]. Bi-
nary logistic regression was also successfully combined with `1/`2 regularization in
the case of user-defined feature groups [20]. However, recent works [33,6,34] using
coordinate descent indicate that logistic regression is substantially slower to train
than `2-loss (squared hinge) SVMs. This is because, contrary to `2-loss SVMs, lo-
gistic regression requires expensive log and exp computations (equivalent to dozens
of multiplications) to compute the gradient or objective value [34]. Motivated by
this background, we propose a novel efficient direct multiclass formulation. Com-
pared to multiclass logistic regression, which suffers from the same problems as its
binary counterpart, our formulation can be optimized very efficiently by block coor-
dinate descent and lends itself to large-scale and high-dimensional problems such as
document classification.

4 Sparse direct multiclass classification

4.1 Objective function

Given n training instances xi ∈ Rd and their associated labels yi ∈ {1, . . . ,m}, our
goal is to estimate W such that Eq. (1) produces accurate predictions and W is

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 5

Algorithm 1 Block-coordinate algorithm for minimization of F (W)

W ← 0d×m
for k = 1, 2, . . . ,K do

for l = 1, 2, . . . , d do
Choose block j [Section 4.4]
Update W j: ←W j: + αjδj [Algorithm 2]

end for
Stop if a suitable criterion is met [Section 4.5]

end for

row-wise sparse. To this end, we minimize the following convex objective:

minimize
W∈Rd×m

F (W) =
1

n

n∑
i=1

∑
r 6=yi

max(1− (W :yi · xi −W :r · xi), 0)2

︸ ︷︷ ︸
L(W)

+λ
d∑
j=1

||W j:||2︸ ︷︷ ︸
R(W)

,

(2)
where λ > 0 is a parameter controlling the trade-off between loss and penalty min-
imization. We call F (W) `1/`2-regularized multiclass squared hinge loss function.
Intuitively, for all training instances and classes (different from the correct label), if
the score is less than the score assigned to the correct label by at least 1, the model
suffers zero loss. Otherwise, it suffers a loss which is quadratically proportional to
the difference between the scores. Besides convexity, F (W) possesses the following
desirable properties:

1. It is a direct multiclass formulation and its relation with Eq. (1) is intuitive.
2. Its objective value and gradient can be computed efficiently (unlike multiclass

logistic regression, which requires expensive log and exp operations).
3. It empirically performs comparably or better than other multitask and multiclass

formulations.
4. It meets several conditions needed to prove global convergence of block coordinate

descent algorithms (see Section 4.6).

Our objective, Eq. (2), is similar in spirit to Weston and Watkins’ multiclass
SVM formulation [30], in that it ensures that the correct class’s score is greater
than all the other classes by at least 1. However, it has the following differences: it
is unconstrained (rather than constrained), it is `1/`2-regularized (rather than `22-
regularized) and it penalizes misclassifications quadratically (rather linearly), which
ensures differentiability of L(W).

4.2 Optimization by block coordinate descent

A key property of F (W) is the separability of its non-smooth part R(W) over groups
j = 1, 2, . . . , d. This calls for an algorithm which minimizes F (W) by updating W
group by group. In this paper, to minimize F (W), we thus employ block coordinate
descent. We consider two variants, one with line search (Tseng and Yun [28]) and the
other without (Richtárik and Takáč [23]). We present the two variants in a unified
manner.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 6

Algorithm 2 Solving the block sub-problem associated with W j:.

Compute G(W)j: [Algorithm 3]
Choose Lj [Section 4.4]
Compute
V j: = W j: − 1

Lj
G(W)j:

µj = λ
Lj

W ∗j: = Proxµj ||·||2 (V j:) = max{1− µj

||V j:||2
, 0}V j:

δj = W ∗j: −W j:

Choose αj [Section 4.4]
Update W j: ←W j: + αjδj

Algorithm 1 outlines block coordinate descent for minimizing F (W). At each
iteration, Algorithm 1 selects a block W j: ∈ Rm of coefficients and updates it,
keeping all other blocks fixed (how to choose the block is delayed to Section 4.4).
This procedure is repeated several times until a suitable stopping criterion is met or
the maximum number of outer iterations K is reached. The main difficulty arising
in Algorithm 1 is how to solve the sub-problem associated with each weight block
W j:. Let W t be the weight matrix at iteration t. The key idea of block coordinate
descent frameworks for non-smooth separable minimization [28,23] is to update each
block by solving the following quadratic approximation of F around W t:

W ∗j: = argmin
W j:∈Rm

G(W t)Tj:(W j:−W t
j:) +

1

2
(W j:−W t

j:)
THt(W j:−W t

j:) +λ||W j:||2,

(3)
where we used G(W)j: ∈ Rm to denote the jth row of the gradient of L(W) and Ht

is a m×m matrix. If we choose Ht = LtjI where Ltj is a scalar (we discuss its choice
in Section 4.4) and I is the identity matrix, Eq. (3) can be rewritten as:

W ∗j: = argmin
W j:∈Rm

1

2
||W j: − V t

j:||
2 + µtj ||W j:||2

where we defined V t
j: = W t

j: − 1
Lt

j
G(W t)j: and µtj = λ

Lt
j
. This problem takes a form

which is well-known in the signal-processing literature and whose solution is called
proximity operator [7]. The proximity-operator associated with the `2 norm takes a
closed form (see e.g. [11] for a derivation):

W ∗j: = Proxµt
j ||·||2(V t

j:) = max{1−
µtj

||V t
j:||2

, 0}V t
j:. (4)

This operator is known as vectorial soft-thresholding operator [32], owing to the fact

that W ∗j: becomes entirely zero when 1− µt

||V t
j:||2

< 0. Summarizing, we obtain W ∗j:

by taking a partial gradient step with step size 1
Lt

j
and then projecting the result by

Proxµt
j ||·||2 . Finally, let δtj = W ∗j: −W

t
j:. The last step consists in setting W t+1

j: =

W t
j: +αtjδ

t
j . We discuss the choice of αtj in Section 4.4. Algorithm 2 summarizes how

to solve the block sub-problem associated with W j: (we drop the superscript t since
there is no ambiguity).

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 7

4.3 Efficient partial gradient computation

We now discuss efficient computation of the partial gradient G(W)j: of L(W), which
is crucial for the general efficiency of Algorithm 1. We first rewrite L(W) as:

L(W) =
1

n

n∑
i=1

∑
r 6=yi

max(A(W)ir, 0)2,

where A(W) is a n×m matrix defined by:

A(W)ir = 1− (W :yi · xi −W :r · xi).

The partial gradient of L(W) can then be concisely written as:

G(W)j: = − 2

n

n∑
i=1

∑
r 6=yi

max(A(W)ir, 0)[xijeyi − xijer], (5)

where er = [0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0]T.

Since computing A(W)ir from scratch would be computationally prohibitive,
we instead initialize A(W) to 1n×m at the beginning of Algorithm 1, then when a
weight block is updated by W j: ← W j: + αjδj , we update A(W) by A(W)ir ←
A(W)ir + αj(δjr − δjyi)xij for all i such that xij 6= 0 and all r 6= yi. Thanks to
this implementation technique, denoting n̂ the average number of non-zero values
per feature, the cost of computing Eq. (5) is only O(n̂(m − 1)). We summarize
how to efficiently compute G(W)j: in Algorithm 3. When using sparse data, the
compressed sparse column (CSC) format can be used for fast access to all non-zero
values of feature j (inner loop in Algorithm 3).

4.4 Choice of block, Ltj and αtj

We now discuss how to choose, at every iteration, the block W j: to update, Ltj and

αtj , depending on whether a line search is used or not.

4.4.1 With line search (Tseng and Yun)

Following Tseng and Yun [28], we can choose

Ltj = max(||h(W t)j:||∞, ε),

where ε is a small constant (e.g., 10−12) to ensure positivity and:

h(W)j: = [
∂2L

∂W 2
j1

, . . . ,
∂2L

∂W 2
jm

]T.

In our case, L is not twice-differentiable, since G(W) is not differentiable when
A(W)ir = 0. We can however define its generalized second derivatives [19,6]:

h(W)j: =
2

n

n∑
i=1

∑
r 6=yi

δ[A(W)ir>0](x
2
ijeyi + x2

ijer), (6)

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 8

Algorithm 3 Efficient computation of G(W)j: and h(W)j:
G(W)j: ← 0m
h(W)j: ← 0m
for r = 1, 2, . . . ,m do

for i = 1, 2, . . . , n such that xij 6= 0 do
if yi 6= r and A(W)ir > 0 then
G(W)jyi ← G(W)jyi −

2
n
A(W)irxij

G(W)jr ← G(W)jr + 2
n
A(W)irxij

h(W)jyi ← h(W)jyi + 2
n
x2
ij

h(W)jr ← h(W)jr + 2
n
x2
ij

end if
end for

end for

where δ[.] is the Kronecker delta. Since choosing Ltj as above might lead to an

overly large step size 1
Lt

j
, Tseng and Yun choose αtj such that the following sufficient

decrease condition is satisfied:

F (W t+1)− F (W t) ≤ σαtj(G(W t)Tj:δj + λ||W t
j: + δj ||2 − λ||W t

j:||2), (7)

where σ is a user-defined constant such that 0 < σ < 1. We can choose αtj by

backtracking line search, that is, by sequentially trying αtj = 1, ω, ω2, . . . until Eq.
(7) is satisfied. Common choices in the optimization literature for σ and ω are 0.01
and 0.5, respectively. Since we have W t+1

j: = (1 − αtj)W
t
j: + αtjW

∗
j:, we see that

W t+1
j: can be interpreted as a weighted sum between the current iterate and the

subproblem’s solution.
Similarly to Eq. (5), the cost of computing Eq. (7) and Eq. (6) is O(n̂(m−1)). In

practice, we observe that one line search step often suffices for Eq. (7) to be satisfied.
Therefore, the cost of one call to Algorithm 2 is in general O(n̂(m− 1)).

To enjoy Tseng and Yun’s theoretical guarantees (see Section 4.6), we need to
use cyclic block selection. That is, in Algorithm 1, at each inner iteration, we need
to choose j = l.

4.4.2 Without line search (Richtárik and Takáč)

We show in Appendix A that G(W)j: is Lipschitz with constant

Kj =
4(m− 1)

n

∑
i

x2
ij .

Following Richtárik and Takáč [23], we can choose Ltj = Kj . In that case, no line

search is needed, i.e., αtj = 1 and W t+1
j: = W ∗j:. Our implementation pre-computes

Kj ∀j ∈ {1, . . . , d} and stores the results in a d-dimensional vector. Note that,
Richtárik and Takáč assume that blocks are selected with uniform probability 1

d .
Using a line search or not is a matter of trade-off: using a line search has higher

cost per iteration but can potentially lead to greater progress due to the larger step
size. We compare both strategies experimentally in Section 5.2. One advantage of
Richtárik and Takáč’s framework, however, is that it can be parallelized [24], poten-
tially leading to significant speedups. In future work, we plan to compare sequential
and parallel block coordinate descent when applied to our objective, Eq. (2).

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 9

4.5 Stopping criterion

We would like to develop a stopping criterion for Algorithm 1 which can be checked at
almost no extra computational cost. Proposition 1 characterizes an optimal solution
of Eq. (2).

Proposition 1 W is an optimal solution of Eq. (2) if and only if ∀j:
||G(W)j:||2 ≤ λ if W j: = 0

G(W)j: +
λW j:

||W j:||2
= 0 if W j: 6= 0.

(8a)

(8b)

Proof is given in Appendix B. Using Proposition 1 and the fact that Eq. (8b) is
equivalent to ||G(W)j:||2 = λ if W j: 6= 0, we define vt, the optimality violation at

the tth iteration (the bigger, the stronger the violation):

vt =

{
max(||G(W t)j(t):||2 − λ, 0) if W t

j(t): = 0

|||G(W t)j(t):||2 − λ| if W t
j(t): 6= 0,

(9)

where j(t) denotes the block selected at the tth iteration. In Eq. (9), the max operator
is to account for the inequality in (8a) and the absolute value for the equality in (8b).
Since we already need G(W t)j(t): for solving each block sub-problem, computing vt

comes at almost no extra cost.
As indicated in Algorithm 1, we check convergence at the end of each outer

iteration. Let T k = {(k − 1)d+ 1, (k − 1)d+ 2, . . . , kd} be the set of values taken by
t at the kth outer iteration. One possible stopping criterion is:∑

t∈T k v
t∑

t∈T 1 vt
< τ, (10)

where 0 < τ ≤ 1 is a user-defined tolerance constant (the bigger, the faster to stop).
This criterion is the most natural when cyclic block selection is used, since the sums
in Eq. (10) are then over all blocks 1, . . . , d. Another possible stopping criterion
consists in replacing the `1 norm by the `∞ norm:

maxt∈T k vt

maxt∈T 1 vt
< τ.

We use this criterion when randomized uniform block selection is used. In both cases,
the denominator serves the purpose of normalization (hence, τ is not sensitive to the
dataset dimensionality).

4.6 Global convergence properties

We discuss convergence properties for the two block coordinate descent variants we
considered: cyclic block coordinate descent with line search (Tseng and Yun [28])
and randomized block coordinate descent without line search (Richtárik and Takáč
[23]). To have finite termination of the line search, Tseng and Yun (Lemma 5.1),

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 10

require that L has Lipschitz continuous gradient, which we prove with Lemma 1 in
Appendix A. For asymptotic convergence, Tseng and Yun assume that each block is
cyclically visited (Equation (12)). They further assume (Assumption 1) that Ht is
upper-bounded by some value and lower-bounded by 0, which is guaranteed by our
choice Ht = LtjI. Richtárik and Takáč also assume (Section 2) that the blockwise
gradient is Lipschitz. They show (Theorem 4) that using their algorithm, there exists
a finite iteration t such that P (F (W t) − F (W ∗) ≤ ε) ≥ 1 − ρ, where ε > 0 is the
accuracy of the solution and 0 < ρ < 1 is the target confidence.

4.7 Extensions

A straightforward extension of our objective, Eq. (2), is label ranking with multilabel
data:

minimize
W∈Rd×m

1

n

n∑
i=1

∑
r∈Yi,r′ 6∈Yi

max(1− (W :r · xi −W :r′ · xi), 0)2 + λ

d∑
j=1

||W j:||2,

where Yi is the set of labels assigned to xi. Intuitively, this objective attempts to
assign higher score to relevant labels than to non-relevant labels. If the goal is to
predict label sets rather than label rankings, threshold selection methods [13,12]
may be applied as a post-processing step.

Another possible extension consists in replacing `1/`2 regularization by `1/`∞
regularization or `1 + `1/`2 regularization (sparse group lasso [15]). This requires
changing the proximity operator, Eq. (4), as well as reworking the stopping crite-
rion developed in Section 4.5. Similarly to `1/`2 regularization, `1/`∞ regularization
leads to group sparsity. However, the proximity operator associated with the `∞
norm requires a projection on an `1-norm ball [1] and is thus computationally more
expensive than the proximity operator associated with the `2 norm, which takes a
closed form, Eq. (4). For `1 + `1/`2 regularization (sparse group lasso), the group-
wise proximity operator can readily be computed by applying first the proximity
operator associated with the `1 norm and then the one associated with the `2 norm
[1]. However, sparse group lasso regularization requires the tuning of an extra hy-
perparameter, which balances between `1/`2 and `1 regularizations. For this reason,
we do not consider it in our experiments.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 11

Table 1 Datasets used in Section 5.

Dataset Instances Features Non-zero features Classes
Amazon7 1,362,109 262,144 0.04% 7

RCV1 534,135 47,236 0.1% 52
MNIST 70,000 780 19% 10
News20 18,846 130,088 0.1% 20
Sector 9,619 55,197 0.3% 105

5 Experiments

We conducted two experiments. In the first experiment, we investigated the per-
formance (in terms of speed of convergence and row sparsity) of block coordinate
descent (with or without line search) for optimizing the proposed direct multiclass
formulation Eq. (2), compared to other state-of-the-art solvers. In the second experi-
ment, we compared the proposed direct multiclass formulation with other multiclass
and multitask formulations in terms of test accuracy, row sparsity and training speed.
Experiments were run on a Linux machine with an Intel Xeon CPU (3.47GHz) and
4GB memory.

5.1 Datasets

Table 1 summarizes the datasets we used to conduct our experiments:

– Amazon7: product-review (books, DVD, electronics, ...) classification.
– RCV1: news document classification.
– MNIST: handwritten digit classification.
– News20: newgroup message classification.
– Sector: web-page (industry sectors) classification.

We created Amazon7 using the entire data of Dredze et al. [9] (they used only a small
subset). For the scale of this dataset, constructing feature vectors from raw text by
conventional bag-of-words extraction exceeded the memory of our computer. For this
reason, we instead used the hashing trick [29] (a popular technique for large-scale and
high-dimensional linear classification problems) and set the dimensionality to d =
218. Amazon7 is available for download from http://www.mblondel.org/data/. Other
datasets are available in vectorized form from http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. To determine test accuracy, we used stratified selection in
order to split each dataset into 4/5 training and 1/5 testing.

5.2 Comparison of block coordinate descent with other solvers

In this section, we compare different solvers:

– BCD (LS): block coordinate descent with line search and with cyclic block selec-
tion (Tseng and Yun [28]),

– BCD (CST): block coordinate descent without line search and with randomized
uniform block selection (Richtárik and Takáč [23]),

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 12

– FISTA (LS): an accelerated iterative thresholding algorithm with line search
(Beck and Teboulle [3]),

– FISTA (CST): same as above but with constant step size 1
K (see Appendix A),

– SpaRSA: a similar approach to ISTA [3] but with different line search (Wright
et al. [32]),

– FOBOS: a projected stochastic subgradient descent framework (Duchi and Singer
[11]).

All solvers are used to minimize the same objective: our proposed multiclass
formulation, Eq. (2).

Fig. 2 and Fig. 3 compare the relative objective value difference F (W)−F (W ∗)
F (W ∗)

(lower is better) and test accuracy (higher is better) of the above solvers as a function
of training time, when λ = 10−3 and λ = 10−5, respectively. For FOBOS, we used
the step size ηt = η0√

t
, where we chose η0 beforehand from 10−3, 10−2, . . . , 103 with

a held-out validation set.

Fig. 4 compares the number of non-zero rows of the solution (lower is better)
as a function of training time for the different solvers, when λ = 10−3 (left) and
λ = 10−5 (right).

5.2.1 Comparison of block coordinate descent with or without line search

Fig. 2 and Fig. 3 indicate that block coordinate descent (BCD) with line search was
overall slightly faster to converge than without. Empirically, we observe that the
sufficient decrease condition checked by the line search, Eq. (7), is usually accepted
on the first try (αtj = 1). In that case, the line search does not incur much extra

cost, since the objective value difference F (W t+1)−F (W t), needed for Eq. (7), can
be computed in the same loop as the partial gradient. For the few times when more
than one line search step is required, our formulation has the advantage that the
objective value difference can be computed very efficiently (no expensive log or exp).
However, similarly to other iterative solvers, BCD (both with or without line search)
may suffer from slow convergence on very loosely regularized problems (very small
λ).

In terms of row sparsity, Fig. 4 shows that in all datasets, BCD had a two-phase
behavior: first increasing the number of non-zero rows, then rapidly decreasing it.
Compared to other solvers, BCD was always the fastest to reach the sparsity level
corresponding to a given λ value.

5.2.2 Comparison with a projected stochastic subgradient descent solver: FOBOS

BCD outperformed FOBOS on smaller datasets (News20, Sector) and was compara-
ble to FOBOS on larger datasets (MNIST, RCV1, Amazon7). However, for FOBOS,
we found that tuning the initial step size η0 was crucial to obtain good convergence
speed and accuracy. This additional “degree of freedom” is a major disadvantage of
FOBOS over BCD, in practice. However, since it is based on stochastic subgradient
descent, FOBOS can handle non-differentiable loss functions (e.g., the Crammer-
Singer multiclass loss), unlike BCD.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 13

Fig. 4 shows that FOBOS obtained much less sparse solutions than BCD. In
particular, on RCV1 with λ = 10−3, BCD obtained less than 5% non-zero rows
whereas FOBOS obtained almost 80%.

5.2.3 Comparison with full-gradient solvers: FISTA and SpaRSA

BCD outperformed FISTA and SpaRSA on all datasets, both in speed of objective
value decrease and test accuracy increase. FISTA (LS) and SpaRSA achieved similar
convergence speed with a slight advantage for FISTA (LS). Interestingly, FISTA
(CST) was always quite worse than FISTA (LS), showing that, in the full-gradient
case, doing a line search to adjust the step size at every iteration is greatly beneficial.
In contrast, the difference between BCD (LS) and BCD (CST) appeared to be
smaller. FISTA (CST) uses one global step size 1

K whereas BCD (CST) uses a per-
block step size 1

Kj
. Therefore, BCD (CST) uses a constant step size which is more

appropriate for each block.
BCD, FOBOS, FISTA and SpaRSA differ in how they make use of gradient

information at each iteration. FISTA and SpaRSA use the entire gradient G(W) ∈
Rd×m averaged over all n training instances. This is expensive, especially when both
n and d are large. On the other hand, FOBOS uses a stochastic approximation of
the entire gradient (averaged over a single training instance) and BCD uses only
the partial gradient G(W)j: ∈ Rm (averaged over all training instances). FOBOS
and BCD can therefore quickly start to minimize Eq. (2) and increase test accuracy,
when FISTA and SpaRSA are not even done computing G(W) yet. Additionally,
FISTA and SpaRSA change W entirely at each iteration, which forces to recompute
G(W) and F (W t+1) − F (W t) entirely. In the case of BCD, only one block W j: is
modified at a time, enabling the fast implementation technique described in Section
4.3.

In terms of sparsity, FISTA and SpaRSA reduced the number of non-zero rows
much more slowly than BCD. However, in the limit, they obtained similar row
sparsity to BCD.

5.2.4 Effect of shrinking

We also extended to `1/`2 regularization the shrinking method originally proposed
by Yuan et al. [33] for `1-regularized binary classification. Indeed, using optimal-
ity conditions developed in Section 4.5, it is possible to discard zero blocks early
if, according to the optimality conditions, they are likely to remain zero. However,
we found that shrinking did not improve convergence on lower-dimensional datasets
such as RCV1 and only slightly helped on higher-dimensional datasets such as Ama-
zon7. This is in line with Yuan et al.’s experimental results on `1-regularized binary
classification.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 14

101 102 103 104

Time (seconds)
0.0

1.5

3.0

4.5

6.0

7.5

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(a) Amazon7

101 102 103 104

Time (seconds)
0

4

8

12

16

20

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(b) RCV1

101 102 103

Time (seconds)
0.0

2.5

5.0

7.5

10.0

12.5

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(c) MNIST

10-1 100 101 102 103

Time (seconds)
0

1

2

3

4

5

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

10-1 100 101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(d) News20

100 101 102 103

Time (seconds)
0

5

10

15

20

25

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

100 101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(e) Sector

Fig. 2 Relative objective value difference (left) and test accuracy (right) as a function of training
time, when λ = 10−3. Time is in log-scale.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 15

101 102 103 104

Time (seconds)
0

5

10

15

20

25

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(a) Amazon7

101 102 103 104

Time (seconds)
0

25

50

75

100

125

150

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(b) RCV1

101 102 103

Time (seconds)
0

4

8

12

16

20

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(c) MNIST

10-1 100 101 102 103

Time (seconds)
0

30

60

90

120

150

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

10-1 100 101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(d) News20

100 101 102 103

Time (seconds)
0

200

400

600

800

1000

Re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

di
ffe

re
nc

e

100 101 102 103

Time (seconds)
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(e) Sector

Fig. 3 Relative objective value difference (left) and test accuracy (right) as a function of training
time, when λ = 10−5. Time is in log-scale.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 16

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(a) Amazon7

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

101 102 103 104

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(b) RCV1

101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(c) MNIST

10-1 100 101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

10-1 100 101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(d) News20

100 101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

100 101 102 103

Time (seconds)
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-z
er

o
ro

w
s

BCD (LS)
BCD (CST)
FISTA (LS)
FISTA (CST)
SpaRSA
FOBOS

(e) Sector

Fig. 4 Percentage of non-zero rows as a function of training time, when λ = 10−3 (left) and
λ = 10−5 (right). Time is in log-scale.

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 17

5.3 Comparison with other multiclass and multitask objectives

In this experiment, we used block coordinate descent to minimize and compare
different `1/`2-regularized multiclass and multitask objectives:

– multiclass squared hinge (proposed, same as Eq. (2)):

minimize
W∈Rd×m

1

n

n∑
i=1

∑
r 6=yi

max(1− (W :yi · xi −W :r · xi), 0)2 + λ

d∑
j=1

||W j:||2.

– multitask squared hinge:

minimize
W∈Rd×m

1

n

m∑
r=1

n∑
i=1

max(1− Y irW :r · xi, 0)2 + λ

d∑
j=1

||W j:||2, (11)

where Y ir = +1 if yi = r and Y ir = −1 otherwise.
– multiclass logistic regression:

minimize
W∈Rd×m

1

n

n∑
i=1

log(1 +
∑
r 6=yi

exp(W :r · xi −W :yi · xi)) + λ

d∑
j=1

||W j:||2. (12)

For both multitask squared hinge and multiclass logistic regression, we computed
the partial gradient using an efficient implementation technique similar to the one de-
scribed in Section 4.3. For the multiclass and multitask squared hinge formulations,
we used BCD with line search. For the multiclass logistic regression formulation, we
used BCD without line search, since we observed faster training times (see Section
5.3.1). For multiclass logistic regression, the partial gradient’s Lipschitz constant is
Kj = 1

2n

∑
i x

2
ij [10].

Fig. 5 compares the row-sparsity / test-accuracy trade-off of the above objectives.
We generated 10 log-spaced values between λ = 10−2 and λ = 10−4 (Sector), and
between λ = 10−3 and λ = 10−5 (other datasets). For each λ value, we computed
the solution and measured the percentage of non-zero rows as well as test accuracy,
so as to obtain Fig. 5. Table 2 shows the time (minimum, median and maximum)
that was needed to compute the solutions of each objective. The results reported are
averages obtained from 3 different train-test splits. We set τ = 10−3 and K = 200.

5.3.1 Comparison with multiclass logistic regression

Compared to multiclass logistic regression, Eq. (12), our objective achieved overall
comparable accuracy. As indicated in Table 2, however, our objective was substan-
tially faster to train (up to ten times in terms of median time) than multiclass logis-
tic regression. Computationally, our objective has indeed two important advantages.
First, the objective and gradient are “lazy”: they iterate over instances and classes
only when the score is not greater than the score assigned to the correct label by
at least 1, whereas multiclass logistic regression always iterates over all n instances
and m− 1 classes. Second, they do not contain any exp or log computations, which
are expensive to compute in practice (equivalent to dozens of multiplications) [34].

We also tried to use BCD with line search for optimizing the multiclass logistic
regression objective. However, we found that the version without line search was

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 18

0 4 8 12 16 20
Percentage of non-zero rows

93.2

93.6

94.0

94.4

94.8

Te
st

 a
cc

ur
ac

y

(a) Amazon7

0 8 16 24 32 40
Percentage of non-zero rows

88

89

90

91

92

93

Te
st

 a
cc

ur
ac

y

MC Squared Hinge
MC Log
MT Squared Hinge

(b) RCV1

50 60 70 80 90
Percentage of non-zero rows

90.0

90.5

91.0

91.5

92.0

92.5

93.0

Te
st

 a
cc

ur
ac

y

(c) MNIST

0 5 10 15 20 25
Percentage of non-zero rows

80.0

82.5

85.0

87.5

90.0

92.5

Te
st

 a
cc

ur
ac

y

(d) News20

0 2 4 6 8 10 12
Percentage of non-zero rows

76

80

84

88

92

Te
st

 a
cc

ur
ac

y

(e) Sector

Fig. 5 Test accuracy of multiclass and multiclass `1/`2-regularized objective functions as a
function of the percentage of non-zero rows in the solution. Results were obtained by computing
solutions for 10 log-spaced values between λ = 10−2 and λ = 10−4 (Sector), and between
λ = 10−3 and λ = 10−5 (other datasets).

overall faster. For example, on Amazon7, the median time with line search was
8723.28 seconds instead of 5822.83 seconds without line search. This contrasts with
our results from Section 5.2 and thus suggests that a line search may not be beneficial
when the objective value and gradient are expensive to compute. However, our results
show that even without line search, multiclass logistic regression is much slower to
train than our formulation.

5.3.2 Comparison with multitask squared hinge loss

Compared to the multitask squared hinge formulation, Eq. (11), we found that
our direct multiclass formulation had overall better accuracy and training time.
This multitask formulation can be thought as one-vs-rest with `1/`2 regularization.
It is semantically different from our multiclass formulation, since it only attempts
to correctly predict binary labels for different tasks (columns of Y), not the true

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 19

Table 2 Minimum, median and maximum training times (in seconds) of different `1/`2-
regularized objective functions, when computing solutions for 10 log-space values between
λ = 10−2 and λ = 10−4 (Sector), and between λ = 10−3 and λ = 10−5 (other datasets).

Dataset MC Squared Hinge MT Squared Hinge MC Logistic

Amazon7
285.93 655.53 4,137.39
486.54 909.84 5,822.83

1,118.65 1,740.90 6,128.27

RCV1
2,962.82 5,089.91 10,413.47
3,901.58 6,300.77 11,540.80
4,581.33 6,556.67 15,055.57

MNIST
32.55 42.74 141.54
55.25 79.56 260.30
61.67 99.37 645.04

News20
50.46 71.42 172.94
70.73 93.82 218.04
75.08 98.15 244.62

Sector
62.01 251.57 149.09
167.01 259.50 532.30
191.52 273.85 743.45

multiclass labels. It is instructive to compare its gradient (without regularization
term)

GMT (W)j: = − 2

n

∑
r

∑
i

Y ir max(1− Y irW :r · xi, 0)xijer (13)

with the gradient in the case of our formulation,

G(W)j: = − 2

n

n∑
i=1

∑
r 6=yi

max(1− (W :yi · xi −W :r · xi), 0)[xijeyi − xijer]. (14)

The main difference is that the inner sum in Eq. (13) updates only one element
GMT (W)jr of the gradient by adding xij weighted by Y ir max(1− Y irW :r · xi, 0),
whereas the inner sum in Eq. (14) updates two elements G(W)jr and G(W)jyi by
adding/subtracting xij weighted by max(A(W)ir, 0) = max(1 − (W :yi · xi −W :r ·
xi), 0).

Using an efficient implementation technique similar to the one described in Sec-
tion 4.3, the cost of computing Eq. (13) is O(n̂m) rather than O(n̂(m − 1)) for Eq.
(14). We also observed that our multiclass objective typically reached the stopping
criterion in fewer iterations than the multitask objective (e.g., k = 73 vs. k = 108
on the News20 dataset with λ = 10−3).

6 Conclusion

In this paper, we proposed a novel direct sparse multiclass formulation, specifically
designed for large-scale and high-dimensional problems. We presented two block co-
ordinate descent variants [28,23] in a unified manner and developed the core compo-
nents needed to efficiently optimize our formulation. Experimentally, we showed that
block coordinate descent achieves comparable or better convergence speed than FO-
BOS [11], while obtaining much sparser solutions and not needing an extra hyperpa-
rameter. Furthermore, it outperformed full gradient based solvers such as FISTA [3]

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 20

and SpaRSA [32]. Compared to multiclass logistic regression, our multiclass formu-
lation had significantly faster training times (up to ten times in terms of median
time) while achieving similar test accuracy. Compared to a multitask squared hinge
formulation, our formulation had overall better test accuracy and faster training
times. In future work, we would like to empirically evaluate the extensions described
in Section 4.7.

A Lemma 1 and its proof

Lemma 1 L has Lipschitz continuous gradient, that is, there exists K > 0 such that

||G(W 1)−G(W 2)|| ≤ K||W 1 −W 2|| ∀W 1,W 2 ∈ Rd×m.

Proof. We rewrite L(W) using a single vector [26] notation:

L(W) =
1

n

n∑
i=1

∑
r 6=yi

max(1− (W̄ · Φ(xi, yi)− W̄ · Φ(xi, r)), 0)2,

where W̄ ∈ Rdm refers to the “flattened” version of W and Φ(x, r) ∈ Rdm is a vector which is
zero everywhere except in the block corresponding to class r where it is x. Using this notation,
the entire “flattened” gradient can be concisely written as:

Ḡ(W) = −
2

n

n∑
i=1

∑
r 6=yi

max(1− W̄ · Φir, 0)Φir,

where Φir = Φ(xi, yi) − Φ(xi, r). We first show that max(1 − W̄ · Φir, 0)Φir itself is Lipschitz,

that is, there exists K̂ such that:

||max(1− W̄ 1 · Φir, 0)Φir −max(1− W̄ 2 · Φir, 0)Φir|| ≤ K̂||W̄ 1 − W̄ 2|| ∀W̄ 1, W̄ 2 ∈ Rdm.

We consider different cases. If both 1−W̄ 1 ·Φir < 0 and 1−W̄ 2 ·Φir < 0, then the left-hand side
becomes zero and the inequality trivially holds for any K̂. If 1−W̄ 1 ·Φir > 0 and 1−W̄ 2 ·Φir < 0,
then:

||(1− W̄ 1 · Φir)Φir|| = (1− W̄ 1 · Φir)||Φir||
≤ (W̄ 2 · Φir − W̄ 1 · Φir)||Φir||
= Φir · (W̄ 2 − W̄ 1)||Φir||

≤ ||Φir||2||W̄ 2 − W̄ 1||.
The second line uses W̄ 2 · Φir > 1 and the last line uses the Cauchy-Shwarz inequality. The
other two cases can be handled similarly. max(1− W̄ ·Φir, 0)Φir is thus Lipschitz with constant

K̂ = ||Φir||2 = 2||xi||2. Finally, a sum of Lipschitz functions is Lipschitz, therefore, G(W) is

Lipschitz with constant K = 4
n

∑
i

∑
r 6=yi ||xi||

2 =
4(m−1)

n

∑
i ||xi||2. Using the same proof

technique, we can show that G(W)j: is Lipschitz with constant Kj =
4(m−1)

n

∑
i x

2
ij .

B Proof of Proposition 1

From standard convex analysis, W is an optimal solution of Eq. (2) if and only if:

0 ∈ ∂F (W) = ∂L(W) + λ∂R(W) (15)

where ∂F (W) denotes the subdifferential of F . Since L is differentiable, we have ∂L(W) =

{G(W)}. Denote R̂(W j:) = ||W j:||2. We have ∂R(W) = [∂R̂(W 1:), . . . , ∂R̂(W d:)], where:

∂R̂(W j:) =

{
{z ∈ Rm : R̂∗(z) ≤ 1}, if W j: = 0

{z ∈ Rm : R̂∗(z) = 1 and zTW j: = R̂(w)}, if W j: 6= 0,

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 21

and R̂∗ denotes the dual norm of R̂ [1]. Since the `2 norm is dual of itself, we have:{
∂R̂(W j:) ∈ {z ∈ Rm : ||z||2 ≤ 1} if W j: = 0

∂R̂(W j:) =
Wj:

||Wj:||2
if W j: 6= 0.

Finally, applying Eq. (15), we obtain for all j:{
||G(W)j:||2 ≤ λ if W j: = 0

G(W)j: +
λW j:

||W j:||2
= 0 if W j: 6= 0,

which concludes the proof.

References

1. Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing
penalties. Foundations and Trends in Machine Learning 4(1), 1–106 (2012)

2. Bakin, S.: Adaptative regression and model selection in data mining problems. Ph.D. thesis,
Australian National University (1999)

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences. 2, 183–202 (2009)

4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999)
5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers.

Proceedings of Conference on Learning Theory (COLT), pp. 144–152 (1992)
6. Chang, K.W., Hsieh, C.J., Lin, C.J.: Coordinate descent method for large-scale l2-loss linear

support vector machines. Journal of Machine Learning Research pp. 1369–1398 (2008)
7. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale

Modeling & Simulation 4, 1168–1200 (2005)
8. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based

vector machines. Journal of Machine Learning Research 2, 265–292 (2002)
9. Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: Pro-

ceedings of International Conference on Machine Learning (ICML), pp. 264–271 (2008)
10. Duchi, J., Singer, Y.: Boosting with structural sparsity. In: Proceedings of International

Conference on Machine Learning (ICML), pp. 297–304 (2009)
11. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting.

Journal of Machine Learning Research pp. 2899–2934 (2009)
12. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Proceedings

of Neural Information Processing Systems (NIPS), pp. 681–687 (2001)
13. Fan, R.E., Lin, C.J.: A Study on Threshold Selection for Multi-label Classification. Tech.

rep., National Taiwan University (2007)
14. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. The

Annals of Applied Statistics 1, 302–332 (2007)
15. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso.

Tech. Rep. arXiv:1001.0736 (2010)
16. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models

via coordinate descent. Journal of Statistical Software 33, 1–22 (2010)
17. Fu, W.J.: Penalized Regressions: The Bridge versus the Lasso. Journal of Computational

and Graphical Statistics 7, 397–416 (1998)
18. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application

to the classification of microarray data and satellite radiance data. Journal of the American
Statistical Association 99, 67–81 (2004)

19. Mangasarian, O.: A finite newton method for classification. Optimization Methods and
Software pp. 913–929 (2002)

20. Meier, L., Van De Geer, S., Bhlmann, P.: The group lasso for logistic regression. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 70(1), 53–71 (2008)

21. Obozinski, G., Taskar, B., Jordan, M.I.: Joint covariate selection and joint subspace selection
for multiple classification problems. Statistics and Computing 20(2), 231–252 (2010)

Block Coordinate Descent Algorithms for Large-scale Sparse Multiclass Classification 22

22. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient Block-coordinate Descent Algorithms for the
Group Lasso. Tech. rep., Columbia Uversity (2010)

23. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent meth-
ods for minimizing a composite function. Mathematical Programming pp. 1–38 (2012)

24. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization.
Tech. Rep. arXiv:1212.0873 (2012)

25. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning
Research 5, 101–141 (2004)

26. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient
solver for svm. Mathematical Programming pp. 1–28 (2010)

27. Shevade, S.K., Keerthi, S.S.: A simple and efficient algorithm for gene selection using sparse
logistic regression. Bioinformatics 19(17), 2246–2253 (2003)

28. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable mini-
mization. Mathematical Programming 117, 387–423 (2009)

29. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for
large scale multitask learning. In: Proceedings of International Conference on Machine Learn-
ing (ICML), pp. 1113–1120 (2009)

30. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In:
Proceedings of European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning, pp. 219–224 (1999)

31. Wright, S.J.: Accelerated block-coordinate relaxation for regularized optimization. SIAM
Journal on Optimization 22, 159–186 (2012)

32. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approx-
imation. Transactions on Signal Processing 57(7), 2479–2493 (2009)

33. Yuan, G.X., Chang, K.W., Hsieh, C.J., Lin, C.J.: A comparison of optimization methods
and software for large-scale l1-regularized linear classification. Journal of Machine Learning
Research pp. 3183–3234 (2010)

34. Yuan, G.X., Ho, C.H., Lin, C.J.: An improved glmnet for l1-regularized logistic regression.
In: Proceedings of the International Conference on Knowledge Discovery and Data mining,
pp. 33–41 (2011)

35. Yuan, M., Yuan, M., Lin, Y., Lin, Y.: Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society, Series B 68, 49–67 (2006)

36. Zhang, H.H., Liu, Y., Wu, Y., Zhu, J.: Variable selection for multicategory svm via sup-norm
regularization. Electronic Journal of Statistics 2, 149–167 (2006)

37. Zhao, P., Yu, B.: On model selection consistency of lasso. Journal of Machine Learning
Research 7, 2541–2563 (2006)

38. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society Series B 67, 301–320 (2005)

